An introduction to infinite projected entangled-pair state methods for variational ground state simulations using automatic differentiation

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY SciPost Physics Pub Date : 2024-09-10 DOI:10.21468/scipostphyslectnotes.86
Jan Naumann, Erik Lennart Weerda, Matteo Rizzi, Jens Eisert, Philipp Schmoll
{"title":"An introduction to infinite projected entangled-pair state methods for variational ground state simulations using automatic differentiation","authors":"Jan Naumann, Erik Lennart Weerda, Matteo Rizzi, Jens Eisert, Philipp Schmoll","doi":"10.21468/scipostphyslectnotes.86","DOIUrl":null,"url":null,"abstract":"Tensor networks capture large classes of ground states of phases of quantum matter faithfully and efficiently. Their manipulation and contraction has remained a challenge over the years, however. For most of the history, ground state simulations of two-dimensional quantum lattice systems using (infinite) projected entangled pair states have relied on what is called a time-evolving block decimation. In recent years, multiple proposals for the variational optimization of the quantum state have been put forward, overcoming accuracy and convergence problems of previously known methods. The incorporation of automatic differentiation in tensor networks algorithms has ultimately enabled a new, flexible way for variational simulation of ground states and excited states. In this work we review the state-of-the-art of the variational iPEPS framework, providing a detailed introduction to automatic differentiation, a description of a general foundation into which various two-dimensional lattices can be conveniently incorporated, and demonstrative benchmarking results.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphyslectnotes.86","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tensor networks capture large classes of ground states of phases of quantum matter faithfully and efficiently. Their manipulation and contraction has remained a challenge over the years, however. For most of the history, ground state simulations of two-dimensional quantum lattice systems using (infinite) projected entangled pair states have relied on what is called a time-evolving block decimation. In recent years, multiple proposals for the variational optimization of the quantum state have been put forward, overcoming accuracy and convergence problems of previously known methods. The incorporation of automatic differentiation in tensor networks algorithms has ultimately enabled a new, flexible way for variational simulation of ground states and excited states. In this work we review the state-of-the-art of the variational iPEPS framework, providing a detailed introduction to automatic differentiation, a description of a general foundation into which various two-dimensional lattices can be conveniently incorporated, and demonstrative benchmarking results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用自动微分进行变异基态模拟的无限投影纠缠对态方法简介
张量网络能忠实而高效地捕捉量子物质相的大量基态。然而,多年来,张量网络的操作和收缩仍然是一项挑战。在历史上的大部分时间里,使用(无限)投影纠缠对态的二维量子晶格系统的基态模拟都依赖于所谓的时间演进块抽取。近年来,人们提出了量子态变分优化的多种方案,克服了之前已知方法的精度和收敛性问题。将自动微分纳入张量网络算法,最终为基态和激发态的变分模拟提供了一种新的、灵活的方法。在这项工作中,我们回顾了变分 iPEPS 框架的最新进展,详细介绍了自动微分,描述了可以方便地将各种二维晶格纳入其中的一般基础,以及示范性基准结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SciPost Physics
SciPost Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
8.20
自引率
12.70%
发文量
315
审稿时长
10 weeks
期刊介绍: SciPost Physics publishes breakthrough research articles in the whole field of Physics, covering Experimental, Theoretical and Computational approaches. Specialties covered by this Journal: - Atomic, Molecular and Optical Physics - Experiment - Atomic, Molecular and Optical Physics - Theory - Biophysics - Condensed Matter Physics - Experiment - Condensed Matter Physics - Theory - Condensed Matter Physics - Computational - Fluid Dynamics - Gravitation, Cosmology and Astroparticle Physics - High-Energy Physics - Experiment - High-Energy Physics - Theory - High-Energy Physics - Phenomenology - Mathematical Physics - Nuclear Physics - Experiment - Nuclear Physics - Theory - Quantum Physics - Statistical and Soft Matter Physics.
期刊最新文献
Two infinite families of facets of the holographic entropy cone Higher-form symmetry and chiral transport in real-time Abelian lattice gauge theory Flux-tunable Kitaev chain in a quantum dot array General quantum-classical dynamics as measurement based feedback Riemannian optimization of photonic quantum circuits in phase and Fock space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1