Unraveling complexity: Singular value decomposition in complex experimental data analysis

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY SciPost Physics Pub Date : 2024-09-11 DOI:10.21468/scipostphyscore.7.3.061
Judith F. Stein, Aviad Frydman, Richard Berkovits
{"title":"Unraveling complexity: Singular value decomposition in complex experimental data analysis","authors":"Judith F. Stein, Aviad Frydman, Richard Berkovits","doi":"10.21468/scipostphyscore.7.3.061","DOIUrl":null,"url":null,"abstract":"Analyzing complex experimental data with multiple parameters is challenging. We propose using Singular Value Decomposition (SVD) as an effective solution. This method, demonstrated through real experimental data analysis, surpasses conventional approaches in understanding complex physics data. Singular values and vectors distinguish and highlight various physical mechanisms and scales, revealing previously challenging elements. SVD emerges as a powerful tool for navigating complex experimental landscapes, showing promise for diverse experimental measurements.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":"27 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphyscore.7.3.061","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Analyzing complex experimental data with multiple parameters is challenging. We propose using Singular Value Decomposition (SVD) as an effective solution. This method, demonstrated through real experimental data analysis, surpasses conventional approaches in understanding complex physics data. Singular values and vectors distinguish and highlight various physical mechanisms and scales, revealing previously challenging elements. SVD emerges as a powerful tool for navigating complex experimental landscapes, showing promise for diverse experimental measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示复杂性:复杂实验数据分析中的奇异值分解
分析具有多个参数的复杂实验数据具有挑战性。我们建议使用奇异值分解(SVD)作为有效的解决方案。通过实际实验数据分析证明,这种方法在理解复杂物理数据方面超越了传统方法。奇异值和矢量能区分并突出各种物理机制和尺度,揭示以前难以理解的元素。SVD 是浏览复杂实验景观的有力工具,为各种实验测量带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SciPost Physics
SciPost Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
8.20
自引率
12.70%
发文量
315
审稿时长
10 weeks
期刊介绍: SciPost Physics publishes breakthrough research articles in the whole field of Physics, covering Experimental, Theoretical and Computational approaches. Specialties covered by this Journal: - Atomic, Molecular and Optical Physics - Experiment - Atomic, Molecular and Optical Physics - Theory - Biophysics - Condensed Matter Physics - Experiment - Condensed Matter Physics - Theory - Condensed Matter Physics - Computational - Fluid Dynamics - Gravitation, Cosmology and Astroparticle Physics - High-Energy Physics - Experiment - High-Energy Physics - Theory - High-Energy Physics - Phenomenology - Mathematical Physics - Nuclear Physics - Experiment - Nuclear Physics - Theory - Quantum Physics - Statistical and Soft Matter Physics.
期刊最新文献
Two infinite families of facets of the holographic entropy cone Higher-form symmetry and chiral transport in real-time Abelian lattice gauge theory Flux-tunable Kitaev chain in a quantum dot array General quantum-classical dynamics as measurement based feedback Riemannian optimization of photonic quantum circuits in phase and Fock space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1