AstroSR: A Data Set of Galaxy Images for Astronomical Superresolution Research

Jiawei Miao, Liangping Tu, Bin Jiang, Xiangru Li, Bo Qiu
{"title":"AstroSR: A Data Set of Galaxy Images for Astronomical Superresolution Research","authors":"Jiawei Miao, Liangping Tu, Bin Jiang, Xiangru Li, Bo Qiu","doi":"10.3847/1538-4365/ad61e4","DOIUrl":null,"url":null,"abstract":"In the past decade, various sky surveys with a wide range of wavelengths have been conducted, resulting in an explosive growth of survey data. There may be overlapping regions between different surveys, but the data quality and brightness are different. The translation of data quality between different surveys provides benefits for studying the properties of galaxies in specific regions that high-quality surveys have not yet covered. In this paper, we create a data set for analyzing the quality transformation of different surveys, AstroSR, using the galaxy images from overlapping regions from the Subaru/Hyper Suprime-Cam (HSC) and the Sloan Digital Sky Survey (SDSS). In addition, we use superresolution (SR) techniques to improve the quality of low-resolution images in the AstroSR and explore whether the proposed data set is suitable for SR. We try four representative models: EDSR, RCAN, ENLCN, and SRGAN. Finally, we compare the evaluation metrics and visual quality of the above methods. SR models trained with AstroSR successfully generate HSC-like images from SDSS images, which enhance the fine structure present in the SDSS images while retaining important morphological information and increasing the brightness and signal-to-noise. Improving the resolution of astronomical images by SR can improve the size and quality of the sky surveys. The data set proposed in this paper provides strong data support for the study of galaxy SR and opens up new research possibilities in astronomy. The data set is available online at <ext-link ext-link-type=\"uri\" xlink:href=\"https://github.com/jiaweimmiao/AstroSR\" xlink:type=\"simple\">https://github.com/jiaweimmiao/AstroSR</ext-link>.","PeriodicalId":22368,"journal":{"name":"The Astrophysical Journal Supplement Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4365/ad61e4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the past decade, various sky surveys with a wide range of wavelengths have been conducted, resulting in an explosive growth of survey data. There may be overlapping regions between different surveys, but the data quality and brightness are different. The translation of data quality between different surveys provides benefits for studying the properties of galaxies in specific regions that high-quality surveys have not yet covered. In this paper, we create a data set for analyzing the quality transformation of different surveys, AstroSR, using the galaxy images from overlapping regions from the Subaru/Hyper Suprime-Cam (HSC) and the Sloan Digital Sky Survey (SDSS). In addition, we use superresolution (SR) techniques to improve the quality of low-resolution images in the AstroSR and explore whether the proposed data set is suitable for SR. We try four representative models: EDSR, RCAN, ENLCN, and SRGAN. Finally, we compare the evaluation metrics and visual quality of the above methods. SR models trained with AstroSR successfully generate HSC-like images from SDSS images, which enhance the fine structure present in the SDSS images while retaining important morphological information and increasing the brightness and signal-to-noise. Improving the resolution of astronomical images by SR can improve the size and quality of the sky surveys. The data set proposed in this paper provides strong data support for the study of galaxy SR and opens up new research possibilities in astronomy. The data set is available online at https://github.com/jiaweimmiao/AstroSR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AstroSR:用于天文超分辨率研究的星系图像数据集
在过去的十年中,人们开展了各种波长的巡天观测,巡天观测数据呈爆炸式增长。不同巡天之间可能存在重叠区域,但数据质量和亮度却各不相同。不同巡天观测之间数据质量的转换,有利于研究高质量巡天观测尚未覆盖的特定区域的星系特性。在本文中,我们利用来自Subaru/Hyper Suprime-Cam(HSC)和Sloan Digital Sky Survey(SDSS)重叠区域的星系图像,创建了一个用于分析不同巡天质量转换的数据集AstroSR。此外,我们还使用超分辨率(SR)技术来提高 AstroSR 中低分辨率图像的质量,并探索所提议的数据集是否适合 SR。我们尝试了四种具有代表性的模型:EDSR、RCAN、ENLCN 和 SRGAN。最后,我们比较了上述方法的评价指标和视觉质量。使用 AstroSR 训练的 SR 模型成功地从 SDSS 图像生成了类似 HSC 的图像,在保留重要形态信息、提高亮度和信噪比的同时,增强了 SDSS 图像中存在的精细结构。利用 SR 提高天文图像的分辨率可以改善巡天的规模和质量。本文提出的数据集为研究星系SR提供了有力的数据支持,为天文学研究开辟了新的可能性。该数据集可在 https://github.com/jiaweimmiao/AstroSR 在线查阅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying Light-curve Signals with a Deep-learning-based Object Detection Algorithm. II. A General Light-curve Classification Framework Optical Variability of Gaia CRF3 Sources with Robust Statistics and the 5000 Most Variable Quasars Metrics of Astrometric Variability in the International Celestial Reference Frame. I. Statistical Analysis and Selection of the Most Variable Sources Forecast of Foreground Cleaning Strategies for AliCPT-1 Catalog of Proper Orbits for 1.25 Million Main-belt Asteroids and Discovery of 136 New Collisional Families
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1