Towards Real-World Adverse Weather Image Restoration: Enhancing Clearness and Semantics with Vision-Language Models

Jiaqi Xu, Mengyang Wu, Xiaowei Hu, Chi-Wing Fu, Qi Dou, Pheng-Ann Heng
{"title":"Towards Real-World Adverse Weather Image Restoration: Enhancing Clearness and Semantics with Vision-Language Models","authors":"Jiaqi Xu, Mengyang Wu, Xiaowei Hu, Chi-Wing Fu, Qi Dou, Pheng-Ann Heng","doi":"arxiv-2409.02101","DOIUrl":null,"url":null,"abstract":"This paper addresses the limitations of adverse weather image restoration\napproaches trained on synthetic data when applied to real-world scenarios. We\nformulate a semi-supervised learning framework employing vision-language models\nto enhance restoration performance across diverse adverse weather conditions in\nreal-world settings. Our approach involves assessing image clearness and\nproviding semantics using vision-language models on real data, serving as\nsupervision signals for training restoration models. For clearness enhancement,\nwe use real-world data, utilizing a dual-step strategy with pseudo-labels\nassessed by vision-language models and weather prompt learning. For semantic\nenhancement, we integrate real-world data by adjusting weather conditions in\nvision-language model descriptions while preserving semantic meaning.\nAdditionally, we introduce an effective training strategy to bootstrap\nrestoration performance. Our approach achieves superior results in real-world\nadverse weather image restoration, demonstrated through qualitative and\nquantitative comparisons with state-of-the-art works.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the limitations of adverse weather image restoration approaches trained on synthetic data when applied to real-world scenarios. We formulate a semi-supervised learning framework employing vision-language models to enhance restoration performance across diverse adverse weather conditions in real-world settings. Our approach involves assessing image clearness and providing semantics using vision-language models on real data, serving as supervision signals for training restoration models. For clearness enhancement, we use real-world data, utilizing a dual-step strategy with pseudo-labels assessed by vision-language models and weather prompt learning. For semantic enhancement, we integrate real-world data by adjusting weather conditions in vision-language model descriptions while preserving semantic meaning. Additionally, we introduce an effective training strategy to bootstrap restoration performance. Our approach achieves superior results in real-world adverse weather image restoration, demonstrated through qualitative and quantitative comparisons with state-of-the-art works.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向真实世界的恶劣天气图像修复:利用视觉语言模型提高清晰度和语义性
本文探讨了在合成数据基础上训练的恶劣天气图像修复方法在应用于真实世界场景时的局限性。我们制定了一个半监督学习框架,利用视觉语言模型来提高真实世界中各种恶劣天气条件下的修复性能。我们的方法包括在真实数据上使用视觉语言模型评估图像清晰度并提供语义,作为训练修复模型的监督信号。在清晰度增强方面,我们使用真实世界的数据,采用视觉语言模型评估伪标签和天气提示学习的双步骤策略。在语义增强方面,我们通过调整视觉语言模型描述中的天气条件来整合真实世界数据,同时保留语义。我们的方法在真实世界不利天气图像复原方面取得了卓越的成果,这一点通过与最先进的作品进行定性和定量比较得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vista3D: Unravel the 3D Darkside of a Single Image MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion Efficient Low-Resolution Face Recognition via Bridge Distillation Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints NVLM: Open Frontier-Class Multimodal LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1