Video to Music Moment Retrieval

Zijie Xin, Minquan Wang, Ye Ma, Bo Wang, Quan Chen, Peng Jiang, Xirong Li
{"title":"Video to Music Moment Retrieval","authors":"Zijie Xin, Minquan Wang, Ye Ma, Bo Wang, Quan Chen, Peng Jiang, Xirong Li","doi":"arxiv-2408.16990","DOIUrl":null,"url":null,"abstract":"Adding proper background music helps complete a short video to be shared.\nTowards automating the task, previous research focuses on video-to-music\nretrieval (VMR), aiming to find amidst a collection of music the one best\nmatching the content of a given video. Since music tracks are typically much\nlonger than short videos, meaning the returned music has to be cut to a shorter\nmoment, there is a clear gap between the practical need and VMR. In order to\nbridge the gap, we propose in this paper video to music moment retrieval (VMMR)\nas a new task. To tackle the new task, we build a comprehensive dataset\nAd-Moment which contains 50K short videos annotated with music moments and\ndevelop a two-stage approach. In particular, given a test video, the most\nsimilar music is retrieved from a given collection. Then, a Transformer based\nmusic moment localization is performed. We term this approach Retrieval and\nLocalization (ReaL). Extensive experiments on real-world datasets verify the\neffectiveness of the proposed method for VMMR.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Adding proper background music helps complete a short video to be shared. Towards automating the task, previous research focuses on video-to-music retrieval (VMR), aiming to find amidst a collection of music the one best matching the content of a given video. Since music tracks are typically much longer than short videos, meaning the returned music has to be cut to a shorter moment, there is a clear gap between the practical need and VMR. In order to bridge the gap, we propose in this paper video to music moment retrieval (VMMR) as a new task. To tackle the new task, we build a comprehensive dataset Ad-Moment which contains 50K short videos annotated with music moments and develop a two-stage approach. In particular, given a test video, the most similar music is retrieved from a given collection. Then, a Transformer based music moment localization is performed. We term this approach Retrieval and Localization (ReaL). Extensive experiments on real-world datasets verify the effectiveness of the proposed method for VMMR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视频转音乐瞬间检索
为了实现这项任务的自动化,以前的研究主要集中在视频到音乐检索(VMR)上,目的是在音乐集合中找到与给定视频内容最匹配的音乐。由于音乐曲目通常比视频短片要长得多,这意味着返回的音乐必须剪切成较短的片段,因此实际需求与 VMR 之间存在明显的差距。为了弥补这一差距,我们在本文中提出了视频音乐瞬间检索(VMMR)这一新任务。为了完成这项新任务,我们建立了一个包含 50K 个注释了音乐瞬间的短视频的综合数据集 Ad-Moment,并开发了一种两阶段方法。具体来说,给定一个测试视频,从给定集合中检索最相似的音乐。然后,执行基于变换器的音乐时刻定位。我们将这种方法称为检索和定位(ReaL)。在真实世界数据集上进行的大量实验验证了所提出的 VMMR 方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vista3D: Unravel the 3D Darkside of a Single Image MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion Efficient Low-Resolution Face Recognition via Bridge Distillation Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints NVLM: Open Frontier-Class Multimodal LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1