Kangaroo: A Powerful Video-Language Model Supporting Long-context Video Input

Jiajun Liu, Yibing Wang, Hanghang Ma, Xiaoping Wu, Xiaoqi Ma, Xiaoming Wei, Jianbin Jiao, Enhua Wu, Jie Hu
{"title":"Kangaroo: A Powerful Video-Language Model Supporting Long-context Video Input","authors":"Jiajun Liu, Yibing Wang, Hanghang Ma, Xiaoping Wu, Xiaoqi Ma, Xiaoming Wei, Jianbin Jiao, Enhua Wu, Jie Hu","doi":"arxiv-2408.15542","DOIUrl":null,"url":null,"abstract":"Rapid advancements have been made in extending Large Language Models (LLMs)\nto Large Multi-modal Models (LMMs). However, extending input modality of LLMs\nto video data remains a challenging endeavor, especially for long videos. Due\nto insufficient access to large-scale high-quality video data and the excessive\ncompression of visual features, current methods exhibit limitations in\neffectively processing long videos. In this paper, we introduce Kangaroo, a\npowerful Video LMM aimed at addressing these challenges. Confronted with issue\nof inadequate training data, we develop a data curation system to build a\nlarge-scale dataset with high-quality annotations for vision-language\npre-training and instruction tuning. In addition, we design a curriculum\ntraining pipeline with gradually increasing resolution and number of input\nframes to accommodate long videos. Evaluation results demonstrate that, with 8B\nparameters, Kangaroo achieves state-of-the-art performance across a variety of\nvideo understanding benchmarks while exhibiting competitive results on others.\nParticularly, on benchmarks specialized for long videos, Kangaroo excels some\nlarger models with over 10B parameters and proprietary models.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid advancements have been made in extending Large Language Models (LLMs) to Large Multi-modal Models (LMMs). However, extending input modality of LLMs to video data remains a challenging endeavor, especially for long videos. Due to insufficient access to large-scale high-quality video data and the excessive compression of visual features, current methods exhibit limitations in effectively processing long videos. In this paper, we introduce Kangaroo, a powerful Video LMM aimed at addressing these challenges. Confronted with issue of inadequate training data, we develop a data curation system to build a large-scale dataset with high-quality annotations for vision-language pre-training and instruction tuning. In addition, we design a curriculum training pipeline with gradually increasing resolution and number of input frames to accommodate long videos. Evaluation results demonstrate that, with 8B parameters, Kangaroo achieves state-of-the-art performance across a variety of video understanding benchmarks while exhibiting competitive results on others. Particularly, on benchmarks specialized for long videos, Kangaroo excels some larger models with over 10B parameters and proprietary models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
袋鼠支持长语境视频输入的强大视频语言模型
在将大型语言模型(LLM)扩展到大型多模态模型(LMM)方面取得了快速进展。然而,将 LLM 的输入模式扩展到视频数据仍然是一项具有挑战性的工作,尤其是对于长视频而言。由于无法获得足够的大规模高质量视频数据以及视觉特征的过度压缩,目前的方法在处理长视频方面表现出了局限性。在本文中,我们介绍了旨在应对这些挑战的强大视频 LMM--Kangaroo。面对训练数据不足的问题,我们开发了一个数据整理系统,以建立一个具有高质量注释的大规模数据集,用于视觉语言的预训练和指令调整。此外,我们还设计了一个课程训练管道,逐步提高分辨率和输入帧数,以适应长视频。评估结果表明,在拥有 8B 参数的情况下,Kangaroo 在各种视频理解基准测试中都取得了最先进的性能,同时在其他基准测试中也表现出了极具竞争力的结果,尤其是在专门针对长视频的基准测试中,Kangaroo 在参数超过 10B 的大型模型和专有模型中表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vista3D: Unravel the 3D Darkside of a Single Image MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion Efficient Low-Resolution Face Recognition via Bridge Distillation Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints NVLM: Open Frontier-Class Multimodal LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1