{"title":"Catalytic Activity of Fe/Mn Porphyrins Grafted on Graphitic Carbon Nitride in the Heterogeneous Oxidation of Olefins","authors":"Saeed Rayati, Hamideh Bathaee, Alireza Badiei","doi":"10.1002/aoc.7679","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Biomimetic heterogeneous catalysts were prepared by immobilization of <i>meso</i>-tetrakis(4-carboxyphenyl)porphyrinatomanganese(III) acetate (MnTCPP) and <i>meso</i>-tetrakis(4-carboxyphenyl)porphyrinatoiron(III) chloride (FeTCPP) on graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) nanosheets. The anchored catalysts were characterized by various techniques such as scanning electron microscopy, thermogravimetric analysis, powder X-ray diffraction, ultraviolet visible, photoluminescence, flame atomic absorption, and Fourier transform infrared spectroscopy. The thermogravimetric analysis demonstrated that the prepared catalysts were thermally stable up to almost 350°C, exhibiting high thermal stability. In the following, the catalytic efficiency of the prepared nanocatalyst was also investigated for the oxidation of various olefins with hydrogen peroxide (as a green oxidant) and the effect of various parameters which may affect the catalytic efficiency was optimized. The maximum conversion (100% for α-methylstyrene and 97% for cyclooctene) was obtained in the presence of MnTCPP@C<sub>3</sub>N<sub>4</sub>. The Mn porphyrin nanocatalyst shows higher catalytic efficiency compared to the Fe porphyrin.</p>\n </div>","PeriodicalId":8344,"journal":{"name":"Applied Organometallic Chemistry","volume":"38 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aoc.7679","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Biomimetic heterogeneous catalysts were prepared by immobilization of meso-tetrakis(4-carboxyphenyl)porphyrinatomanganese(III) acetate (MnTCPP) and meso-tetrakis(4-carboxyphenyl)porphyrinatoiron(III) chloride (FeTCPP) on graphitic carbon nitride (g-C3N4) nanosheets. The anchored catalysts were characterized by various techniques such as scanning electron microscopy, thermogravimetric analysis, powder X-ray diffraction, ultraviolet visible, photoluminescence, flame atomic absorption, and Fourier transform infrared spectroscopy. The thermogravimetric analysis demonstrated that the prepared catalysts were thermally stable up to almost 350°C, exhibiting high thermal stability. In the following, the catalytic efficiency of the prepared nanocatalyst was also investigated for the oxidation of various olefins with hydrogen peroxide (as a green oxidant) and the effect of various parameters which may affect the catalytic efficiency was optimized. The maximum conversion (100% for α-methylstyrene and 97% for cyclooctene) was obtained in the presence of MnTCPP@C3N4. The Mn porphyrin nanocatalyst shows higher catalytic efficiency compared to the Fe porphyrin.
期刊介绍:
All new compounds should be satisfactorily identified and proof of their structure given according to generally accepted standards. Structural reports, such as papers exclusively dealing with synthesis and characterization, analytical techniques, or X-ray diffraction studies of metal-organic or organometallic compounds will not be considered. The editors reserve the right to refuse without peer review any manuscript that does not comply with the aims and scope of the journal. Applied Organometallic Chemistry publishes Full Papers, Reviews, Mini Reviews and Communications of scientific research in all areas of organometallic and metal-organic chemistry involving main group metals, transition metals, lanthanides and actinides. All contributions should contain an explicit application of novel compounds, for instance in materials science, nano science, catalysis, chemical vapour deposition, metal-mediated organic synthesis, polymers, bio-organometallics, metallo-therapy, metallo-diagnostics and medicine. Reviews of books covering aspects of the fields of focus are also published.