Exploring the Impact of 1,8-Diioodoctane on the Photostability of Organic Photovoltaics

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-09-13 DOI:10.1021/acsaem.4c01272
Rachel C. Kilbride, Emma L. K. Spooner, Elena J. Cassella, Mary E. O’Kane, Khalid Doudin, David G. Lidzey, Richard Jones, Andrew J. Parnell
{"title":"Exploring the Impact of 1,8-Diioodoctane on the Photostability of Organic Photovoltaics","authors":"Rachel C. Kilbride, Emma L. K. Spooner, Elena J. Cassella, Mary E. O’Kane, Khalid Doudin, David G. Lidzey, Richard Jones, Andrew J. Parnell","doi":"10.1021/acsaem.4c01272","DOIUrl":null,"url":null,"abstract":"Improving the photostability of the light-harvesting blend film in organic photovoltaics is crucial to achieving long-term operational lifetimes that are required for commercialization. However, understanding the degradation factors which drive instabilities is complex, with many variables such as film morphology, residual solvents, and acceptor or donor design all influencing how light and oxygen interact with the blend film. In this work, we show how blend films comprising a donor polymer (PBDB-T) and small molecule acceptor (PC<sub>71</sub>BM or ITIC) processed with solvent additive (DIO) yield very different film morphologies, device performance, and photostability. We show that DIO is retained approximately 10 times more effectively in ITIC based films compared to PC<sub>71</sub>BM. Unexpectedly, we see that while high volumes of DIO reduce photostability for encapsulated ITIC devices, when oxygen is introduced DIO can improve the lifetime of PBDB-T:ITIC based cells. Here, the addition of 3% DIO doubles the <i>T</i><sub>80</sub> compared to ITIC based devices without DIO, suggesting that DIO-induced morphological changes interfere with or reduce photo-oxidative reactions.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaem.4c01272","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the photostability of the light-harvesting blend film in organic photovoltaics is crucial to achieving long-term operational lifetimes that are required for commercialization. However, understanding the degradation factors which drive instabilities is complex, with many variables such as film morphology, residual solvents, and acceptor or donor design all influencing how light and oxygen interact with the blend film. In this work, we show how blend films comprising a donor polymer (PBDB-T) and small molecule acceptor (PC71BM or ITIC) processed with solvent additive (DIO) yield very different film morphologies, device performance, and photostability. We show that DIO is retained approximately 10 times more effectively in ITIC based films compared to PC71BM. Unexpectedly, we see that while high volumes of DIO reduce photostability for encapsulated ITIC devices, when oxygen is introduced DIO can improve the lifetime of PBDB-T:ITIC based cells. Here, the addition of 3% DIO doubles the T80 compared to ITIC based devices without DIO, suggesting that DIO-induced morphological changes interfere with or reduce photo-oxidative reactions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索 1,8-二辛烷对有机光伏器件光稳定性的影响
要实现商业化所需的长期运行寿命,提高有机光伏技术中光收集混合薄膜的光稳定性至关重要。然而,了解导致不稳定性的降解因素非常复杂,薄膜形态、残留溶剂、受体或供体设计等许多变量都会影响光和氧气与共混薄膜的相互作用。在这项研究中,我们展示了由供体聚合物(PBDB-T)和小分子受体(PC71BM 或 ITIC)组成的共混薄膜在使用溶剂添加剂(DIO)处理后如何产生截然不同的薄膜形态、器件性能和光稳定性。我们发现,与 PC71BM 相比,DIO 在基于 ITIC 的薄膜中的保留效率大约高出 10 倍。出乎意料的是,我们发现虽然大量的 DIO 会降低封装 ITIC 器件的光稳定性,但当引入氧气时,DIO 可以提高基于 PBDB-T:ITIC 的电池的使用寿命。在这里,与不添加 DIO 的 ITIC 器件相比,添加 3% 的 DIO 可使 T80 延长一倍,这表明 DIO 引发的形态变化干扰或减少了光氧化反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Exploring the Impact of 1,8-Diioodoctane on the Photostability of Organic Photovoltaics NiFe2O4 in MoSe2 Exhibits Bifunctional Water Oxidation and Oxygen Reduction (OER and ORR) Catalytic Reactions for Energy Applications Effect of Electrolyte Composition on Biphasic Structural Electrolytes for Laminated Structural Batteries Agar-Activated Carbon Cathode with Optimized Redox Electrolyte for High-Energy and Stable Aqueous Zinc Hybrid Battery–Capacitor Performance Evaluation of the Mixed Conducting Co0.6Mn0.4Al1.6Fe0.4O4-Sm0.2Ce0.8O2 Heterostructure Composite Electrolyte Membrane in SOFC and SOEC Mode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1