Nitrogen and Oxygen Codoped Hierarchically Porous Carbon Derived from Tannic Acid and Reed Straw for High-Performance Supercapacitors

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-09-12 DOI:10.1021/acsaem.4c01027
Yunxiao Zhang, Tiantian Hu, Shanxia Hu, Jingqiang Zhang, Mengting Wang, Minjie Zhou, Zhaohui Hou, Binhong He, Yu Liu
{"title":"Nitrogen and Oxygen Codoped Hierarchically Porous Carbon Derived from Tannic Acid and Reed Straw for High-Performance Supercapacitors","authors":"Yunxiao Zhang, Tiantian Hu, Shanxia Hu, Jingqiang Zhang, Mengting Wang, Minjie Zhou, Zhaohui Hou, Binhong He, Yu Liu","doi":"10.1021/acsaem.4c01027","DOIUrl":null,"url":null,"abstract":"The effective utilization of abundant natural biomass-derived materials as sustainable precursors for developing high-performance electrodes is of great significance for advancing practical applications of supercapacitors. In this study, we propose an effective strategy to convert biomass reed straw and tannic acid (TA) as dual carbon sources into N, O codoped hierarchically porous carbon electrode materials with a rich micro/mesoporous interconnected layered structure, denoted as N-RTC-1.5, through cochemical activation of KOH and melamine (MA) and precarbonization. N-RTC-1.5 exhibits a unique honeycomb-like porous structure with a high specific surface area of up to 2545 m<sup>2</sup>/g. As a supercapacitor electrode, N-RTC-1.5 demonstrates an excellent specific capacitance of 366.0 F/g at 1 A/g in a three-electrode system. Furthermore, the energy density of an N-RTC-1.5//N-RTC-1.5 symmetric supercapacitor reaches 18.32 Wh/kg, and after 10000 cycles at 3 A/g, the capacitance retention is approximately 96%. This research provides a simple, sustainable, and environmentally friendly approach to convert biomass into novel carbon materials required for high-performance supercapacitor electrodes.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaem.4c01027","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The effective utilization of abundant natural biomass-derived materials as sustainable precursors for developing high-performance electrodes is of great significance for advancing practical applications of supercapacitors. In this study, we propose an effective strategy to convert biomass reed straw and tannic acid (TA) as dual carbon sources into N, O codoped hierarchically porous carbon electrode materials with a rich micro/mesoporous interconnected layered structure, denoted as N-RTC-1.5, through cochemical activation of KOH and melamine (MA) and precarbonization. N-RTC-1.5 exhibits a unique honeycomb-like porous structure with a high specific surface area of up to 2545 m2/g. As a supercapacitor electrode, N-RTC-1.5 demonstrates an excellent specific capacitance of 366.0 F/g at 1 A/g in a three-electrode system. Furthermore, the energy density of an N-RTC-1.5//N-RTC-1.5 symmetric supercapacitor reaches 18.32 Wh/kg, and after 10000 cycles at 3 A/g, the capacitance retention is approximately 96%. This research provides a simple, sustainable, and environmentally friendly approach to convert biomass into novel carbon materials required for high-performance supercapacitor electrodes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从单宁酸和芦苇秆中提取的氮氧共掺层多孔碳用于高性能超级电容器
有效利用丰富的天然生物质衍生材料作为开发高性能电极的可持续前驱体,对于推进超级电容器的实际应用具有重要意义。在本研究中,我们提出了一种有效的策略,即通过 KOH 和三聚氰胺(MA)的共化学活化以及预碳化,将生物质芦苇秆和单宁酸(TA)作为双重碳源转化为具有丰富微/介孔互连层状结构的 N、O 共掺分层多孔碳电极材料,命名为 N-RTC-1.5。N-RTC-1.5 具有独特的蜂窝状多孔结构,比表面积高达 2545 m2/g。作为超级电容器电极,在三电极系统中,N-RTC-1.5 在 1 A/g 时的比电容高达 366.0 F/g。此外,N-RTC-1.5//N-RTC-1.5 对称超级电容器的能量密度达到 18.32 Wh/kg,在 3 A/g 条件下循环 10000 次后,电容保持率约为 96%。这项研究为将生物质转化为高性能超级电容器电极所需的新型碳材料提供了一种简单、可持续和环保的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Exploring the Impact of 1,8-Diioodoctane on the Photostability of Organic Photovoltaics NiFe2O4 in MoSe2 Exhibits Bifunctional Water Oxidation and Oxygen Reduction (OER and ORR) Catalytic Reactions for Energy Applications Effect of Electrolyte Composition on Biphasic Structural Electrolytes for Laminated Structural Batteries Agar-Activated Carbon Cathode with Optimized Redox Electrolyte for High-Energy and Stable Aqueous Zinc Hybrid Battery–Capacitor Performance Evaluation of the Mixed Conducting Co0.6Mn0.4Al1.6Fe0.4O4-Sm0.2Ce0.8O2 Heterostructure Composite Electrolyte Membrane in SOFC and SOEC Mode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1