SuspAct: novel suspicious activity prediction based on deep learning in the real-time environment

Sachin Kansal, Akshat Kumar Jain, Moyukh Biswas, Shaurya Bansal, Namay Mahindru, Priya Kansal
{"title":"SuspAct: novel suspicious activity prediction based on deep learning in the real-time environment","authors":"Sachin Kansal, Akshat Kumar Jain, Moyukh Biswas, Shaurya Bansal, Namay Mahindru, Priya Kansal","doi":"10.1007/s00521-024-10355-3","DOIUrl":null,"url":null,"abstract":"<p>In today’s evolving landscape of video surveillance, our study introduces SuspAct, an innovative ensemble model designed to detect suspicious activities in real time swiftly. Leveraging advanced Long-term Recurrent Convolutional Networks (LRCN), SuspAct represents a significant advancement in intelligent surveillance technology. By combining insights from various LRCN models through the Majority Voting ensemble technique, SuspAct enhances its overall robustness, outperforming traditional surveillance methods. Through rigorous experimentation on large-scale datasets, we demonstrate SuspAct’s superiority in proactive crime prevention, showcasing its potential to revolutionize security protocols and contribute substantially to public safety. Our work addresses the challenges posed by the escalating volume of video data and lays a strong foundation for future advancements in intelligent video surveillance technology.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10355-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In today’s evolving landscape of video surveillance, our study introduces SuspAct, an innovative ensemble model designed to detect suspicious activities in real time swiftly. Leveraging advanced Long-term Recurrent Convolutional Networks (LRCN), SuspAct represents a significant advancement in intelligent surveillance technology. By combining insights from various LRCN models through the Majority Voting ensemble technique, SuspAct enhances its overall robustness, outperforming traditional surveillance methods. Through rigorous experimentation on large-scale datasets, we demonstrate SuspAct’s superiority in proactive crime prevention, showcasing its potential to revolutionize security protocols and contribute substantially to public safety. Our work addresses the challenges posed by the escalating volume of video data and lays a strong foundation for future advancements in intelligent video surveillance technology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SuspAct:实时环境中基于深度学习的新型可疑活动预测
在视频监控不断发展的今天,我们的研究引入了一种创新的集合模型 SuspAct,旨在实时快速地检测可疑活动。利用先进的长期递归卷积网络(LRCN),SuspAct 代表了智能监控技术的重大进步。通过 Majority Voting 集合技术,SuspAct 将各种 LRCN 模型的洞察力结合在一起,增强了其整体鲁棒性,表现优于传统监控方法。通过在大规模数据集上进行严格的实验,我们证明了 SuspAct 在主动预防犯罪方面的优势,展示了其彻底改变安全协议并为公共安全做出重大贡献的潜力。我们的工作解决了视频数据量不断攀升带来的挑战,为未来智能视频监控技术的发展奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neuroevolution gives rise to more focused information transfer compared to backpropagation in recurrent neural networks. Potential analysis of radiographic images to determine infestation of rice seeds Recommendation systems with user and item profiles based on symbolic modal data End-to-end entity extraction from OCRed texts using summarization models Firearm detection using DETR with multiple self-coordinated neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1