Gene pointNet for tumor classification

Hao Lu, Mostafa Rezapour, Haseebullah Baha, Muhammad Khalid Khan Niazi, Aarthi Narayanan, Metin Nafi Gurcan
{"title":"Gene pointNet for tumor classification","authors":"Hao Lu, Mostafa Rezapour, Haseebullah Baha, Muhammad Khalid Khan Niazi, Aarthi Narayanan, Metin Nafi Gurcan","doi":"10.1007/s00521-024-10307-x","DOIUrl":null,"url":null,"abstract":"<p>The rising incidence of cancer underscores the imperative for innovative diagnostic and prognostic methodologies. This study delves into the potential of RNA-Seq gene expression data to enhance cancer classification accuracy. Introducing a pioneering approach, we model gene expression data as point clouds, capitalizing on the data's intrinsic properties to bolster classification performance. Utilizing PointNet, a typical technique for processing point cloud data, as our framework's cornerstone, we incorporate inductive biases pertinent to gene expression and pathways. This integration markedly elevates model efficacy, culminating in developing an end-to-end deep learning classifier with an accuracy rate surpassing 99%. Our findings not only illuminate the capabilities of AI-driven models in the realm of oncology but also highlight the criticality of acknowledging biological dataset nuances in model design. This research provides insights into application of deep learning in medical science, setting the stage for further innovation in cancer classification through sophisticated biological data analysis. The source code for our study is accessible at: https://github.com/cialab/GPNet.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10307-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rising incidence of cancer underscores the imperative for innovative diagnostic and prognostic methodologies. This study delves into the potential of RNA-Seq gene expression data to enhance cancer classification accuracy. Introducing a pioneering approach, we model gene expression data as point clouds, capitalizing on the data's intrinsic properties to bolster classification performance. Utilizing PointNet, a typical technique for processing point cloud data, as our framework's cornerstone, we incorporate inductive biases pertinent to gene expression and pathways. This integration markedly elevates model efficacy, culminating in developing an end-to-end deep learning classifier with an accuracy rate surpassing 99%. Our findings not only illuminate the capabilities of AI-driven models in the realm of oncology but also highlight the criticality of acknowledging biological dataset nuances in model design. This research provides insights into application of deep learning in medical science, setting the stage for further innovation in cancer classification through sophisticated biological data analysis. The source code for our study is accessible at: https://github.com/cialab/GPNet.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于肿瘤分类的基因点网络
癌症发病率的上升凸显了创新诊断和预后方法的必要性。本研究深入探讨了 RNA-Seq 基因表达数据在提高癌症分类准确性方面的潜力。我们采用了一种开创性的方法,将基因表达数据建模为点云,利用数据的内在属性来提高分类性能。利用处理点云数据的典型技术 PointNet 作为框架的基石,我们纳入了与基因表达和通路相关的归纳偏差。这种整合显著提高了模型的功效,最终开发出一种端到端的深度学习分类器,准确率超过 99%。我们的发现不仅阐明了人工智能驱动模型在肿瘤学领域的能力,还强调了在模型设计中承认生物数据集细微差别的重要性。这项研究为深度学习在医学科学中的应用提供了见解,为通过复杂的生物数据分析进一步创新癌症分类奠定了基础。我们研究的源代码请访问:https://github.com/cialab/GPNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neuroevolution gives rise to more focused information transfer compared to backpropagation in recurrent neural networks. Potential analysis of radiographic images to determine infestation of rice seeds Recommendation systems with user and item profiles based on symbolic modal data End-to-end entity extraction from OCRed texts using summarization models Firearm detection using DETR with multiple self-coordinated neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1