Enrique Zepeda, Román Manuel Vásquez-Elizondo, Yolanda Freile-Pelegrín, Hugo Pliego-Cortés, Nathalie Bourgougnon, Daniel Robledo
{"title":"Photosynthetic physiology and antioxidant compounds in Gracilaria cornea (Rhodophyta) under light modulation","authors":"Enrique Zepeda, Román Manuel Vásquez-Elizondo, Yolanda Freile-Pelegrín, Hugo Pliego-Cortés, Nathalie Bourgougnon, Daniel Robledo","doi":"10.1007/s10811-024-03317-8","DOIUrl":null,"url":null,"abstract":"<p><i>Gracilaria cornea</i> was exposed to different irradiance intensities (low, moderate, and high) and light qualities (white and white + blue) in experimental cultures. Photosynthetic physiology was measured through daily growth rate, maximum photosynthesis, maximum photochemical efficiency, pigment content (chlorophyll <i>a</i>, phycobiliproteins, carotenoids), and elemental content of carbon and nitrogen. <i>Gracilaria cornea</i> effectively acclimated to low irradiance conditions and displayed tolerance to moderate irradiance, whereas high irradiance resulted in the deterioration of thalli. A decrease in maximum photochemical efficiency and maximum photosynthesis rate under high irradiance conditions was observed. Pigment content decreased during the acclimation period at high irradiance levels but increased when blue light was added under moderate irradiance conditions. The antioxidant capacity decreased in thalli exposed to high irradiance conditions, whereas the addition of blue light increased antioxidant capacity. Overall, the combination of white and blue light stimulated the accumulation of all evaluated compounds in <i>G. cornea</i>. Interestingly, higher values for photosynthesis, pigments, and certain antioxidants were observed under low irradiance conditions. These findings enhance our understanding of the adaptation strategies employed by <i>G. cornea</i>, potentially leading to improvements in indoor cultivation and the control of chemical compound production for nutraceutical applications.</p>","PeriodicalId":15086,"journal":{"name":"Journal of Applied Phycology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10811-024-03317-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gracilaria cornea was exposed to different irradiance intensities (low, moderate, and high) and light qualities (white and white + blue) in experimental cultures. Photosynthetic physiology was measured through daily growth rate, maximum photosynthesis, maximum photochemical efficiency, pigment content (chlorophyll a, phycobiliproteins, carotenoids), and elemental content of carbon and nitrogen. Gracilaria cornea effectively acclimated to low irradiance conditions and displayed tolerance to moderate irradiance, whereas high irradiance resulted in the deterioration of thalli. A decrease in maximum photochemical efficiency and maximum photosynthesis rate under high irradiance conditions was observed. Pigment content decreased during the acclimation period at high irradiance levels but increased when blue light was added under moderate irradiance conditions. The antioxidant capacity decreased in thalli exposed to high irradiance conditions, whereas the addition of blue light increased antioxidant capacity. Overall, the combination of white and blue light stimulated the accumulation of all evaluated compounds in G. cornea. Interestingly, higher values for photosynthesis, pigments, and certain antioxidants were observed under low irradiance conditions. These findings enhance our understanding of the adaptation strategies employed by G. cornea, potentially leading to improvements in indoor cultivation and the control of chemical compound production for nutraceutical applications.
期刊介绍:
The Journal of Applied Phycology publishes work on the rapidly expanding subject of the commercial use of algae.
The journal accepts submissions on fundamental research, development of techniques and practical applications in such areas as algal and cyanobacterial biotechnology and genetic engineering, tissues culture, culture collections, commercially useful micro-algae and their products, mariculture, algalization and soil fertility, pollution and fouling, monitoring, toxicity tests, toxic compounds, antibiotics and other biologically active compounds.
Each issue of the Journal of Applied Phycology also includes a short section for brief notes and general information on new products, patents and company news.