{"title":"Incremental federated learning for traffic flow classification in heterogeneous data scenarios","authors":"Adrian Pekar, Laszlo Arpad Makara, Gergely Biczok","doi":"10.1007/s00521-024-10281-4","DOIUrl":null,"url":null,"abstract":"<p>This paper explores the comparative analysis of federated learning (FL) and centralized learning (CL) models in the context of multi-class traffic flow classification for network applications, a timely study in the context of increasing privacy preservation concerns. Unlike existing literature that often omits detailed class-wise performance evaluation, and consistent data handling and feature selection approaches, our study rectifies these gaps by implementing a feed-forward neural network and assessing FL performance under both independent and identically distributed (IID) and non-independent and identically distributed (non-IID) conditions, with a particular focus on incremental training. In our cross-silo experimental setup involving five clients per round, FL models exhibit notable adaptability. Under IID conditions, the accuracy of the FL model peaked at 96.65%, demonstrating its robustness. Moreover, despite the challenges presented by non-IID environments, our FL models demonstrated significant resilience, adapting incrementally over rounds to optimize performance; in most scenarios, our FL models performed comparably to the idealistic CL model regarding multiple well-established metrics. Through a comprehensive traffic flow classification use case, this work (i) contributes to a better understanding of the capabilities and limitations of FL, offering valuable insights for the real-world deployment of FL, and (ii) provides a novel, large, carefully curated traffic flow dataset for the research community.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10281-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the comparative analysis of federated learning (FL) and centralized learning (CL) models in the context of multi-class traffic flow classification for network applications, a timely study in the context of increasing privacy preservation concerns. Unlike existing literature that often omits detailed class-wise performance evaluation, and consistent data handling and feature selection approaches, our study rectifies these gaps by implementing a feed-forward neural network and assessing FL performance under both independent and identically distributed (IID) and non-independent and identically distributed (non-IID) conditions, with a particular focus on incremental training. In our cross-silo experimental setup involving five clients per round, FL models exhibit notable adaptability. Under IID conditions, the accuracy of the FL model peaked at 96.65%, demonstrating its robustness. Moreover, despite the challenges presented by non-IID environments, our FL models demonstrated significant resilience, adapting incrementally over rounds to optimize performance; in most scenarios, our FL models performed comparably to the idealistic CL model regarding multiple well-established metrics. Through a comprehensive traffic flow classification use case, this work (i) contributes to a better understanding of the capabilities and limitations of FL, offering valuable insights for the real-world deployment of FL, and (ii) provides a novel, large, carefully curated traffic flow dataset for the research community.