Precipitation enhancement over tropical land through the lens of the moisture–precipitation relationship

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Quarterly Journal of the Royal Meteorological Society Pub Date : 2024-08-27 DOI:10.1002/qj.4838
Luca Schmidt, Cathy Hohenegger
{"title":"Precipitation enhancement over tropical land through the lens of the moisture–precipitation relationship","authors":"Luca Schmidt, Cathy Hohenegger","doi":"10.1002/qj.4838","DOIUrl":null,"url":null,"abstract":"Tropical precipitation has been found to be related to column relative humidity by a simple relationship known as the moisture–precipitation relationship . Based on one decade of daily ERA5 reanalysis data, we test whether is able to reproduce the tropical land–ocean precipitation contrast measured by , the ratio between mean precipitation over land and ocean. We find that captures the mean seasonal cycle of as long as we account for the fact that is distinct over land and ocean, and that it varies seasonally. Typical values of above 0.86 imply that precipitation is enhanced over land, relative to the ocean. We therefore investigate next whether this enhancement is due to the differences in and/or in the humidity distribution between land and ocean. We show that, rather than enhancing precipitation, the presence of land modifies in such a way that precipitation over land is disfavored compared to over ocean. Precipitation enhancement over land is instead explained by the modified terrestrial humidity distribution that features a more pronounced tail towards high values compared to the one over ocean. All results rest on an accurate construction of from the underlying data. Simple fit models such as an exponential function that were proposed by previous studies are unable to capture the seasonal cycle of and fail to explain land–ocean differences in precipitation.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4838","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tropical precipitation has been found to be related to column relative humidity by a simple relationship known as the moisture–precipitation relationship . Based on one decade of daily ERA5 reanalysis data, we test whether is able to reproduce the tropical land–ocean precipitation contrast measured by , the ratio between mean precipitation over land and ocean. We find that captures the mean seasonal cycle of as long as we account for the fact that is distinct over land and ocean, and that it varies seasonally. Typical values of above 0.86 imply that precipitation is enhanced over land, relative to the ocean. We therefore investigate next whether this enhancement is due to the differences in and/or in the humidity distribution between land and ocean. We show that, rather than enhancing precipitation, the presence of land modifies in such a way that precipitation over land is disfavored compared to over ocean. Precipitation enhancement over land is instead explained by the modified terrestrial humidity distribution that features a more pronounced tail towards high values compared to the one over ocean. All results rest on an accurate construction of from the underlying data. Simple fit models such as an exponential function that were proposed by previous studies are unable to capture the seasonal cycle of and fail to explain land–ocean differences in precipitation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从水汽与降水关系的角度看热带陆地降水增强问题
热带降水与柱相对湿度之间存在一种简单的关系,即湿度-降水关系。基于十年的ERA5再分析日数据,我们检验了ERA5是否能够再现热带陆地与海洋降水量的对比,即陆地与海洋平均降水量的比值。我们发现,只要考虑到陆地和海洋的降水量是不同的,而且会随季节变化,就能捕捉到陆地和海洋降水量的平均季节周期。0.86 以上的典型值意味着陆地降水量相对于海洋降水量有所增加。因此,我们接下来要研究的是,这种增强是否是由于陆地和海洋湿度分布的差异和/或不同造成的。我们的研究表明,陆地的存在非但不会增强降水,反而会使陆地降水不如海洋降水。陆地降水增加的原因是陆地湿度分布发生了变化,与海洋湿度分布相比,陆地湿度分布的尾部更明显地偏向于高值。所有结果都基于对基础数据的准确构建。以往研究提出的指数函数等简单拟合模型无法捕捉降水的季节周期,也无法解释陆地与海洋降水的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.80
自引率
4.50%
发文量
163
审稿时长
3-8 weeks
期刊介绍: The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues. The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.
期刊最新文献
Multivariate post‐processing of probabilistic sub‐seasonal weather regime forecasts Relationship between vertical variation of cloud microphysical properties and thickness of the entrainment interfacial layer in Physics of Stratocumulus Top stratocumulus clouds Characteristics and trends of Atlantic tropical cyclones that do and do not develop from African easterly waves Teleconnection and the Antarctic response to the Indian Ocean Dipole in CMIP5 and CMIP6 models First trial for the assimilation of radiance data from MTVZA‐GY on board the new Russian satellite meteor‐M N2‐2 in the CMA‐GFS 4D‐VAR system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1