{"title":"RNA–DNA hybrids on protein coding genes are stabilized by loss of RNase H and are associated with DNA damages during S-phase in fission yeast","authors":"Tomoko Sagi, Daichi Sadato, Kazuto Takayasu, Hiroyuki Sasanuma, Yutaka Kanoh, Hisao Masai","doi":"10.1111/gtc.13157","DOIUrl":null,"url":null,"abstract":"<p>RNA–DNA hybrid is a part of the R-loop which is an important non-standard nucleic acid structure. RNA–DNA hybrid/R-loop causes genomic instability by inducing DNA damages or inhibiting DNA replication. It also plays biologically important roles in regulation of transcription, replication, recombination and repair. Here, we have employed catalytically inactive human RNase H1 mutant (D145N) to visualize RNA–DNA hybrids and map their genomic locations in fission yeast cells. The RNA–DNA hybrids appear as multiple nuclear foci in <i>rnh1∆rnh201∆</i> cells lacking cellular RNase H activity, but not in the wild-type. The majority of RNA–DNA hybrid loci are detected at the protein coding regions and tRNA. In <i>rnh1∆rnh201∆</i> cells, cells with multiple Rad52 foci increase during S-phase and about 20% of the RNA–DNA hybrids overlap with Rad52 loci. During S-phase, more robust association of Rad52 with RNA–DNA hybrids was observed in the protein coding region than in M-phase. These results suggest that persistent RNA–DNA hybrids in the protein coding region in <i>rnh1∆rnh201∆</i> cells generate DNA damages during S-phase, potentially through collision with DNA replication forks.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 11","pages":"966-982"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes to Cells","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13157","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA–DNA hybrid is a part of the R-loop which is an important non-standard nucleic acid structure. RNA–DNA hybrid/R-loop causes genomic instability by inducing DNA damages or inhibiting DNA replication. It also plays biologically important roles in regulation of transcription, replication, recombination and repair. Here, we have employed catalytically inactive human RNase H1 mutant (D145N) to visualize RNA–DNA hybrids and map their genomic locations in fission yeast cells. The RNA–DNA hybrids appear as multiple nuclear foci in rnh1∆rnh201∆ cells lacking cellular RNase H activity, but not in the wild-type. The majority of RNA–DNA hybrid loci are detected at the protein coding regions and tRNA. In rnh1∆rnh201∆ cells, cells with multiple Rad52 foci increase during S-phase and about 20% of the RNA–DNA hybrids overlap with Rad52 loci. During S-phase, more robust association of Rad52 with RNA–DNA hybrids was observed in the protein coding region than in M-phase. These results suggest that persistent RNA–DNA hybrids in the protein coding region in rnh1∆rnh201∆ cells generate DNA damages during S-phase, potentially through collision with DNA replication forks.
期刊介绍:
Genes to Cells provides an international forum for the publication of papers describing important aspects of molecular and cellular biology. The journal aims to present papers that provide conceptual advance in the relevant field. Particular emphasis will be placed on work aimed at understanding the basic mechanisms underlying biological events.