Di Liu, Wei Zhang, Xin Guo, Junqiang Ren, Hongtao Xue, Xuefeng Lu
{"title":"Enhancement of Mechanical Properties of NiCo Alloy Induced by Inhomogeneous Gradient of Solute Element Segregation","authors":"Di Liu, Wei Zhang, Xin Guo, Junqiang Ren, Hongtao Xue, Xuefeng Lu","doi":"10.1002/pssb.202400350","DOIUrl":null,"url":null,"abstract":"Inhomogeneous gradient nanocrystals have better mechanical properties than uniform gradient nanocrystals. The segregation of solute elements in inhomogeneous gradient nanocrystals is expected to induce the re‐enhancement of mechanical properties of alloys. Herein, solute element segregation structures of inhomogeneous gradient structure nanocrystalline NiCo alloy are established, simulating tensile deformation via molecular dynamics. The results show that the segregation of solute elements in the inhomogeneous gradient structure of nanocrystals can improve the mechanical properties of the alloy, especially the structure of the intragranular segregation. The intragranular segregation of solute elements induces the decrease of grain boundary energy and greatly enhances the stability of grain boundaries. In addition, the segregation of solute elements within grains can hinder the dislocation movement to a certain extent, and the hindering effect on dislocation movement of stable grain boundaries induced by intragranular segregation of solute elements further enhances the mechanical properties of nanocrystalline alloys. This strategy of combining heterogeneous gradient structure and solute element segregation structure provides a positive and interesting perspective for the design of advanced alloys with excellent properties.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"45 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400350","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Inhomogeneous gradient nanocrystals have better mechanical properties than uniform gradient nanocrystals. The segregation of solute elements in inhomogeneous gradient nanocrystals is expected to induce the re‐enhancement of mechanical properties of alloys. Herein, solute element segregation structures of inhomogeneous gradient structure nanocrystalline NiCo alloy are established, simulating tensile deformation via molecular dynamics. The results show that the segregation of solute elements in the inhomogeneous gradient structure of nanocrystals can improve the mechanical properties of the alloy, especially the structure of the intragranular segregation. The intragranular segregation of solute elements induces the decrease of grain boundary energy and greatly enhances the stability of grain boundaries. In addition, the segregation of solute elements within grains can hinder the dislocation movement to a certain extent, and the hindering effect on dislocation movement of stable grain boundaries induced by intragranular segregation of solute elements further enhances the mechanical properties of nanocrystalline alloys. This strategy of combining heterogeneous gradient structure and solute element segregation structure provides a positive and interesting perspective for the design of advanced alloys with excellent properties.
期刊介绍:
physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions.
physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.