An Efficient and Cost-effective Modified Carbon Paste Electrodes for Diltiazem Hydrochloride Determination in Tablets

IF 1.7 4区 化学 Q3 CHEMISTRY, ANALYTICAL Current Analytical Chemistry Pub Date : 2024-09-03 DOI:10.2174/0115734110314443240828050045
Safa S. EL-Sanafery, Mostafa F. Elshafei, Perihan A. Khalf Alla, Gehad Genidy Mohamed
{"title":"An Efficient and Cost-effective Modified Carbon Paste Electrodes for Diltiazem Hydrochloride Determination in Tablets","authors":"Safa S. EL-Sanafery, Mostafa F. Elshafei, Perihan A. Khalf Alla, Gehad Genidy Mohamed","doi":"10.2174/0115734110314443240828050045","DOIUrl":null,"url":null,"abstract":"Background and Objective: This study presented new sensitive and selective modified carbon paste (MCPE) potentiometric sensors modified with different ion pairs for the determination of the antihypertensive drug diltiazem hydrochloride (DTM-HCl) in biological fluids, pharmaceutical preparations, and in its pure form. Methods: Plasticizers, ion pair type, ion pair content, response time, temperature, and pH were just a few of the experimental factors evaluated that were found to affect electrode efficiency. The two electrodes that show the best sensitivity were prepared by mixing diltiazem-tetraphenyl borate (DTM-TPB) ion pair, graphite, and TCP or o-NPOE as a plasticizer. Result: Over the concentration ranges of 1.0x10-5–1.0x10-2, the produced electrodes I and II demonstrated monovalent Nernstian responses of 55.7±0.902 and 57.6±0.451 mV decade-1. The selectivity property of the suggested electrodes was used to study the interference ions. The concentration of DTM-HCl in pharmaceutical formulations and biological fluids was measured using these modified electrodes. During the validation procedure, metrics like linearity, accuracy, precision, limit of detection, limit of quantification, and specificity were used. Conclusion: The obtained results showed good agreement with the HPLC technique as indicated by the F and t-test values and can conclude the possibility of using this potentiometric method in the routine analysis of DTM-HCl.","PeriodicalId":10742,"journal":{"name":"Current Analytical Chemistry","volume":"8 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115734110314443240828050045","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Objective: This study presented new sensitive and selective modified carbon paste (MCPE) potentiometric sensors modified with different ion pairs for the determination of the antihypertensive drug diltiazem hydrochloride (DTM-HCl) in biological fluids, pharmaceutical preparations, and in its pure form. Methods: Plasticizers, ion pair type, ion pair content, response time, temperature, and pH were just a few of the experimental factors evaluated that were found to affect electrode efficiency. The two electrodes that show the best sensitivity were prepared by mixing diltiazem-tetraphenyl borate (DTM-TPB) ion pair, graphite, and TCP or o-NPOE as a plasticizer. Result: Over the concentration ranges of 1.0x10-5–1.0x10-2, the produced electrodes I and II demonstrated monovalent Nernstian responses of 55.7±0.902 and 57.6±0.451 mV decade-1. The selectivity property of the suggested electrodes was used to study the interference ions. The concentration of DTM-HCl in pharmaceutical formulations and biological fluids was measured using these modified electrodes. During the validation procedure, metrics like linearity, accuracy, precision, limit of detection, limit of quantification, and specificity were used. Conclusion: The obtained results showed good agreement with the HPLC technique as indicated by the F and t-test values and can conclude the possibility of using this potentiometric method in the routine analysis of DTM-HCl.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于片剂中盐酸地尔硫卓测定的高效、经济的改性碳浆电极
背景与目的:本研究提出了用不同离子对修饰的新型灵敏、选择性改性碳浆(MCPE)电位传感器,用于测定生物液体、药物制剂及其纯品中的抗高血压药物盐酸地尔硫卓(DTM-HCl)。方法:增塑剂、离子对类型评估发现,增塑剂、离子对类型、离子对含量、响应时间、温度和 pH 值只是影响电极效率的几个实验因素。通过混合地尔硫卓-四苯基硼酸酯(DTM-TPB)离子对、石墨和作为增塑剂的 TCP 或 o-NPOE 制备了两个灵敏度最高的电极。结果在 1.0x10-5-1.0x10-2 的浓度范围内,所制得的电极 I 和 II 的单价 Nernstian 反应分别为 55.7±0.902 和 57.6±0.451 mV 十年-1。利用所建议电极的选择性特性研究了干扰离子。使用这些改良电极测量了药物制剂和生物液体中 DTM-HCl 的浓度。在验证过程中,使用了线性、准确度、精密度、检测限、定量限和特异性等指标。结论从 F 值和 t 检验值可以看出,所获得的结果与 HPLC 技术具有良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Analytical Chemistry
Current Analytical Chemistry 化学-分析化学
CiteScore
4.10
自引率
0.00%
发文量
90
审稿时长
9 months
期刊介绍: Current Analytical Chemistry publishes full-length/mini reviews and original research articles on the most recent advances in analytical chemistry. All aspects of the field are represented, including analytical methodology, techniques, and instrumentation in both fundamental and applied research topics of interest to the broad readership of the journal. Current Analytical Chemistry strives to serve as an authoritative source of information in analytical chemistry and in related applications such as biochemical analysis, pharmaceutical research, quantitative biological imaging, novel sensors, and nanotechnology.
期刊最新文献
Purification and Kinetics of Chlorogenic Acid from Eucommia ulmoides Oliver Leaves by Macroporous Resins Combined with First-Principles Calculation Research Progress in Starch-based Dye Adsorbents Electrochemical Behavior of an Anti-cancer Drug Erlotinib at Screen-Printed Electrode and its Analytical Application Polygonum hydropiper Leaves have More Medicinal Value than Stems: Based on Chemical Composition and Antioxidant Activity In silico Investigation and Molecular Docking Studies of Pyrazole Incorporated Thiadiazole Derivatives for Antimicrobial Activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1