An efficient schedulability analysis based on worst-case interference time for real-time systems

IF 7.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Science China Information Sciences Pub Date : 2024-08-20 DOI:10.1007/s11432-022-3891-4
Hongbiao Liu, Mengfei Yang, Lei Qiao, Xi Chen, Jian Gong
{"title":"An efficient schedulability analysis based on worst-case interference time for real-time systems","authors":"Hongbiao Liu, Mengfei Yang, Lei Qiao, Xi Chen, Jian Gong","doi":"10.1007/s11432-022-3891-4","DOIUrl":null,"url":null,"abstract":"<p>Real-time systems are widely implemented in the Internet of Things (IoT) and safety-critical systems, both of which have generated enormous social value. Aiming at the classic schedulability analysis problem in real-time systems, we proposed an exact Boolean analysis based on interference (EBAI) for schedulability analysis in real-time systems. EBAI is based on worst-case interference time (WCIT), which considers both the release jitter and blocking time of the task. We improved the efficiency of the three existing tests and provided a comprehensive summary of related research results in the field. Abundant experiments were conducted to compare EBAI with other related results. Our evaluation showed that in certain cases, the runtime gain achieved using our analysis method may exceed 73% compared to the state-of-the-art schedulability test. Furthermore, the benefits obtained from our tests grew with the number of tasks, reaching a level suitable for practical application. EBAI is oriented to the five-tuple real-time task model with stronger expression ability and possesses a low runtime overhead. These characteristics make it applicable in various real-time systems such as spacecraft, autonomous vehicles, industrial robots, and traffic command systems.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-022-3891-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time systems are widely implemented in the Internet of Things (IoT) and safety-critical systems, both of which have generated enormous social value. Aiming at the classic schedulability analysis problem in real-time systems, we proposed an exact Boolean analysis based on interference (EBAI) for schedulability analysis in real-time systems. EBAI is based on worst-case interference time (WCIT), which considers both the release jitter and blocking time of the task. We improved the efficiency of the three existing tests and provided a comprehensive summary of related research results in the field. Abundant experiments were conducted to compare EBAI with other related results. Our evaluation showed that in certain cases, the runtime gain achieved using our analysis method may exceed 73% compared to the state-of-the-art schedulability test. Furthermore, the benefits obtained from our tests grew with the number of tasks, reaching a level suitable for practical application. EBAI is oriented to the five-tuple real-time task model with stronger expression ability and possesses a low runtime overhead. These characteristics make it applicable in various real-time systems such as spacecraft, autonomous vehicles, industrial robots, and traffic command systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最坏情况干扰时间的实时系统高效可调度性分析
实时系统广泛应用于物联网(IoT)和安全关键型系统,两者都产生了巨大的社会价值。针对实时系统中经典的可调度性分析问题,我们提出了一种基于干扰的精确布尔分析法(EBAI),用于实时系统的可调度性分析。EBAI 基于最坏情况干扰时间(WCIT),它同时考虑了任务的释放抖动和阻塞时间。我们提高了现有三种测试的效率,并对该领域的相关研究成果进行了全面总结。我们还进行了大量实验,将 EBAI 与其他相关成果进行比较。我们的评估表明,在某些情况下,与最先进的可调度性测试相比,使用我们的分析方法所获得的运行时间收益可能超过 73%。此外,我们的测试所获得的收益随着任务数量的增加而增加,达到了适合实际应用的水平。EBAI 面向五元组实时任务模型,具有更强的表达能力和较低的运行时开销。这些特点使其适用于各种实时系统,如航天器、自动驾驶汽车、工业机器人和交通指挥系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Information Sciences
Science China Information Sciences COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
12.60
自引率
5.70%
发文量
224
审稿时长
8.3 months
期刊介绍: Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.
期刊最新文献
Weighted sum power maximization for STAR-RIS-aided SWIPT systems with nonlinear energy harvesting TSCompiler: efficient compilation framework for dynamic-shape models NeurDB: an AI-powered autonomous data system State and parameter identification of linearized water wave equation via adjoint method An STP look at logical blocking of finite state machines: formulation, detection, and search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1