The quantum Ising model for perfect matching and solving it with variational quantum eigensolver

IF 7.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Science China Information Sciences Pub Date : 2024-08-19 DOI:10.1007/s11432-023-4039-y
Qilin Zheng, Pingyu Zhu, Chao Wu, Miaomiao Yu, Weihong Luo, Ping Xu
{"title":"The quantum Ising model for perfect matching and solving it with variational quantum eigensolver","authors":"Qilin Zheng, Pingyu Zhu, Chao Wu, Miaomiao Yu, Weihong Luo, Ping Xu","doi":"10.1007/s11432-023-4039-y","DOIUrl":null,"url":null,"abstract":"<p>Obtaining all perfect matchings of a graph is a tough problem in graph theory, and its complexity belongs to the #P-Complete class. The problem is closely related to combinatorics, marriage matching problems, dense subgraphs, the Gaussian boson sampling, chemical molecular structures, and dimer physics. In this paper, we propose a quadratic unconstrained binary optimization formula of the perfect matching problem and translate it into the quantum Ising model. We can obtain all perfect matchings by mapping them to the ground state of the quantum Ising Hamiltonian and solving it with the variational quantum eigensolver. Adjusting the model’s parameters can also achieve the maximum or minimum weighted perfect matching. The experimental results on a superconducting quantum computer of the Origin Quantum Computing Technology Company show that our model can encode 2<sup><i>n</i></sup> dimensional optimization space with only <i>O</i>(<i>n</i>) qubits consumption and achieve a high success probability of the ground state corresponding to all perfect matchings. In addition, the further simulation results show that the model can support a scale of more than 14 qubits, effectively resist the adverse effects of noise, and obtain a high success probability at a shallow variational depth. This method can be extended to other combinatorial optimization problems.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":"73 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-4039-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Obtaining all perfect matchings of a graph is a tough problem in graph theory, and its complexity belongs to the #P-Complete class. The problem is closely related to combinatorics, marriage matching problems, dense subgraphs, the Gaussian boson sampling, chemical molecular structures, and dimer physics. In this paper, we propose a quadratic unconstrained binary optimization formula of the perfect matching problem and translate it into the quantum Ising model. We can obtain all perfect matchings by mapping them to the ground state of the quantum Ising Hamiltonian and solving it with the variational quantum eigensolver. Adjusting the model’s parameters can also achieve the maximum or minimum weighted perfect matching. The experimental results on a superconducting quantum computer of the Origin Quantum Computing Technology Company show that our model can encode 2n dimensional optimization space with only O(n) qubits consumption and achieve a high success probability of the ground state corresponding to all perfect matchings. In addition, the further simulation results show that the model can support a scale of more than 14 qubits, effectively resist the adverse effects of noise, and obtain a high success probability at a shallow variational depth. This method can be extended to other combinatorial optimization problems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
完美匹配的量子伊辛模型及其变分量子求解器的求解
获取图的所有完美匹配是图论中的一个难题,其复杂度属于 #P-Complete 类。该问题与组合学、婚姻匹配问题、密集子图、高斯玻色子采样、化学分子结构和二聚物物理学等密切相关。本文提出了完美匹配问题的二次无约束二元优化公式,并将其转化为量子伊辛模型。我们可以通过将它们映射到量子伊辛哈密顿的基态并用变分量子求解器求解,从而得到所有的完美匹配。调整模型参数也可以实现最大或最小加权完全匹配。在原点量子计算技术公司的超导量子计算机上的实验结果表明,我们的模型只需消耗O(n)量子比特就能对2n维优化空间进行编码,并实现所有完美匹配所对应的基态的高成功概率。此外,进一步的仿真结果表明,该模型可以支持超过 14 量子比特的规模,有效抵御噪声的不利影响,并在浅变分深度下获得高成功概率。这种方法还可以推广到其他组合优化问题中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Information Sciences
Science China Information Sciences COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
12.60
自引率
5.70%
发文量
224
审稿时长
8.3 months
期刊介绍: Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.
期刊最新文献
Weighted sum power maximization for STAR-RIS-aided SWIPT systems with nonlinear energy harvesting TSCompiler: efficient compilation framework for dynamic-shape models NeurDB: an AI-powered autonomous data system State and parameter identification of linearized water wave equation via adjoint method An STP look at logical blocking of finite state machines: formulation, detection, and search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1