Orthogonal waveform design with fractional programming on the ambiguity suppression of SAR systems

IF 7.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Science China Information Sciences Pub Date : 2024-08-19 DOI:10.1007/s11432-023-4076-7
Yunkai Deng, Yongwei Zhang, Zhimin Zhang, Wei Wang, Heng Zhang
{"title":"Orthogonal waveform design with fractional programming on the ambiguity suppression of SAR systems","authors":"Yunkai Deng, Yongwei Zhang, Zhimin Zhang, Wei Wang, Heng Zhang","doi":"10.1007/s11432-023-4076-7","DOIUrl":null,"url":null,"abstract":"<p>Waveform diversity (WD) represents a dynamic and transformative technology widely used in radar systems to enhance sensitivity and discrimination capabilities. Recently, WD techniques have been extensively explored for their potential ambiguity suppression within synthetic aperture radar (SAR) systems. Among these, the alternate transmitting mode combined with orthogonal waveforms emerges as a particularly promising solution. This study focuses on optimizing the power spectrum density (PSD) of signals to design and generate an orthogonal waveform pair that achieves both a low cross-correlation-to-autocorrelation ratio (CAR) and satisfactory imaging performance. Initially, we construct a fractional programming model with convex constraints to minimize the CAR. To address this challenge, we introduce an iterative optimization procedure for the PSD variable, which sequentially reduces the CAR. Each optimization step can be efficiently solved using a quadratically constrained quadratic program, ensuring that the resulting computational complexity remains low. Building on the optimized PSD, we established a parametric piecewise linear model to generate an orthogonal waveform pair. This model not only maintains a low CAR but achieves satisfactory imaging performance in real-time applications. Consequently, this orthogonal waveform pair effectively suppresses range ambiguity in SAR systems. Finally, we demonstrated the practicability and effectiveness of the proposed orthogonal waveforms through detailed simulation experiments, specifically targeting ambiguity suppression in conventional quad-polarization SAR systems.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":"29 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-4076-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Waveform diversity (WD) represents a dynamic and transformative technology widely used in radar systems to enhance sensitivity and discrimination capabilities. Recently, WD techniques have been extensively explored for their potential ambiguity suppression within synthetic aperture radar (SAR) systems. Among these, the alternate transmitting mode combined with orthogonal waveforms emerges as a particularly promising solution. This study focuses on optimizing the power spectrum density (PSD) of signals to design and generate an orthogonal waveform pair that achieves both a low cross-correlation-to-autocorrelation ratio (CAR) and satisfactory imaging performance. Initially, we construct a fractional programming model with convex constraints to minimize the CAR. To address this challenge, we introduce an iterative optimization procedure for the PSD variable, which sequentially reduces the CAR. Each optimization step can be efficiently solved using a quadratically constrained quadratic program, ensuring that the resulting computational complexity remains low. Building on the optimized PSD, we established a parametric piecewise linear model to generate an orthogonal waveform pair. This model not only maintains a low CAR but achieves satisfactory imaging performance in real-time applications. Consequently, this orthogonal waveform pair effectively suppresses range ambiguity in SAR systems. Finally, we demonstrated the practicability and effectiveness of the proposed orthogonal waveforms through detailed simulation experiments, specifically targeting ambiguity suppression in conventional quad-polarization SAR systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用分数程序设计正交波形,抑制合成孔径雷达系统的模糊性
波形分集(WD)是雷达系统中广泛应用的一种动态和变革性技术,可提高灵敏度和分辨能力。最近,WD 技术因其在合成孔径雷达(SAR)系统中抑制模糊性的潜力而受到广泛关注。其中,结合正交波形的交替发射模式是一种特别有前途的解决方案。本研究的重点是优化信号的功率谱密度 (PSD),设计并生成一对正交波形,既能实现较低的交叉相关与自相关比 (CAR),又能获得令人满意的成像性能。最初,我们构建了一个带有凸约束的分数编程模型,以最小化 CAR。为了应对这一挑战,我们引入了 PSD 变量的迭代优化程序,该程序会依次降低 CAR。每个优化步骤都可以使用二次约束二次方程程序有效求解,从而确保计算复杂度保持在较低水平。在优化 PSD 的基础上,我们建立了一个参数分片线性模型来生成一对正交波形。该模型不仅保持了较低的 CAR 值,而且在实时应用中实现了令人满意的成像性能。因此,这对正交波形有效地抑制了合成孔径雷达系统中的测距模糊。最后,我们通过详细的模拟实验证明了所提出的正交波形的实用性和有效性,特别是针对传统四极化合成孔径雷达系统中的模糊抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Information Sciences
Science China Information Sciences COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
12.60
自引率
5.70%
发文量
224
审稿时长
8.3 months
期刊介绍: Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.
期刊最新文献
Weighted sum power maximization for STAR-RIS-aided SWIPT systems with nonlinear energy harvesting TSCompiler: efficient compilation framework for dynamic-shape models NeurDB: an AI-powered autonomous data system State and parameter identification of linearized water wave equation via adjoint method An STP look at logical blocking of finite state machines: formulation, detection, and search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1