Byzantine-Robust Hierarchical Aggregation for Cross-Device Federated Learning in Consumer IoT

IF 10.9 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Consumer Electronics Pub Date : 2024-08-27 DOI:10.1109/TCE.2024.3450649
Jingwei Liu;Yufeng Wu;Wei Du;Rong Sun;Guangxia Xu;Lei Liu;Celimuge Wu
{"title":"Byzantine-Robust Hierarchical Aggregation for Cross-Device Federated Learning in Consumer IoT","authors":"Jingwei Liu;Yufeng Wu;Wei Du;Rong Sun;Guangxia Xu;Lei Liu;Celimuge Wu","doi":"10.1109/TCE.2024.3450649","DOIUrl":null,"url":null,"abstract":"Nowadays, Federated Learning (FL) has emerged as a prominent technique of model training in Consumer Internet of Things (CIoT) without sharing sensitive local data. Targeting privacy leakage of cross-device FL in CIoT, various privacy-preserving FL schemes have been proposed. Regrettably, existing schemes still face three significant challenges: 1) Current privacy-preserving strategies struggle to fully defend against Byzantine attacks in FL without compromising data privacy; 2) Most privacy-preserving techniques (e.g., secret sharing) in FL result in substantial computation and communication overhead; 3) The non-colluding dual-server setting limits the applicability of FL. To overcome these challenges, we propose a Byzantine-robust hierarchical federated learning scheme, named BHFL. This scheme not only effectively defends against Byzantine attacks while safeguarding user privacy but also avoids the need for a dual-server architecture. Simultaneously, the hierarchical aggregation structure can effectively train non-IID cross-device data while maintaining high communication efficiency. We evaluate BHFL on several benchmark datasets, and the experimental results demonstrate that BHFL achieves high accuracy and Byzantine robustness compared to the popular FedAvg scheme. Therefore, BHFL is well-suited for CIoT scenarios.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"71 2","pages":"6359-6370"},"PeriodicalIF":10.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10648998/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, Federated Learning (FL) has emerged as a prominent technique of model training in Consumer Internet of Things (CIoT) without sharing sensitive local data. Targeting privacy leakage of cross-device FL in CIoT, various privacy-preserving FL schemes have been proposed. Regrettably, existing schemes still face three significant challenges: 1) Current privacy-preserving strategies struggle to fully defend against Byzantine attacks in FL without compromising data privacy; 2) Most privacy-preserving techniques (e.g., secret sharing) in FL result in substantial computation and communication overhead; 3) The non-colluding dual-server setting limits the applicability of FL. To overcome these challenges, we propose a Byzantine-robust hierarchical federated learning scheme, named BHFL. This scheme not only effectively defends against Byzantine attacks while safeguarding user privacy but also avoids the need for a dual-server architecture. Simultaneously, the hierarchical aggregation structure can effectively train non-IID cross-device data while maintaining high communication efficiency. We evaluate BHFL on several benchmark datasets, and the experimental results demonstrate that BHFL achieves high accuracy and Byzantine robustness compared to the popular FedAvg scheme. Therefore, BHFL is well-suited for CIoT scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拜占庭式稳健分层聚合,用于消费类物联网中的跨设备联合学习
目前,在不共享敏感本地数据的情况下,联邦学习(FL)已成为消费者物联网(CIoT)模型训练的重要技术。针对CIoT中跨设备FL的隐私泄露问题,人们提出了各种保护隐私的FL方案。遗憾的是,现有方案仍然面临三个重大挑战:1)目前的隐私保护策略难以在不损害数据隐私的情况下完全防御FL中的拜占庭攻击;2) FL中的大多数隐私保护技术(如秘密共享)导致大量的计算和通信开销;3)非串通双服务器设置限制了FL的适用性。为了克服这些挑战,我们提出了一种拜占庭鲁棒分层联邦学习方案,称为BHFL。该方案在保护用户隐私的同时,有效防御了拜占庭式攻击,避免了对双服务器架构的需求。同时,分层聚合结构可以有效训练非iid跨设备数据,同时保持较高的通信效率。我们在多个基准数据集上对BHFL进行了评估,实验结果表明,与流行的fedag方案相比,BHFL具有较高的精度和拜占庭鲁棒性。因此,BHFL非常适合CIoT场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
9.30%
发文量
59
审稿时长
3.3 months
期刊介绍: The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.
期刊最新文献
2025 Index IEEE Transactions on Consumer Electronics IEEE Consumer Technology Society Officers and Committee Chairs IEEE Consumer Technology Society Board of Governors Guest Editorial Sustainable Computing for Next-Generation Low-Carbon Agricultural Consumer Electronics IEEE Consumer Technology Society Board of Governors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1