XAI-Empowered MRI Analysis for Consumer Electronic Health

IF 10.9 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Consumer Electronics Pub Date : 2024-08-13 DOI:10.1109/TCE.2024.3443203
Al Amin;Kamrul Hasan;M. Shamim Hossain
{"title":"XAI-Empowered MRI Analysis for Consumer Electronic Health","authors":"Al Amin;Kamrul Hasan;M. Shamim Hossain","doi":"10.1109/TCE.2024.3443203","DOIUrl":null,"url":null,"abstract":"The intelligent use of artificial intelligence-generated content (AIGC) in magnetic resonance imaging (MRI) analysis is a significant step towards the rapidly advancing field of consumer electronics (CE) used in healthcare. It greatly improves the accuracy and usefulness of diagnostic processes. This paper introduces a novel MRI analysis approach through the lens of AIGC, leveraging physics-informed deep learning (PIDL) models. This integration pioneers a new paradigm in consumer healthcare diagnostics and embeds physics principles into deep learning (DL) models, thus improving interpretability and adherence to physical constraints. Additionally, this method improves the visibility of the healthcare community by integrating explainable AI (XAI) techniques, including gradient-weighted class activation mapping (Grad-CAM) and Local Interpretable Model-Agnostic Explanations (LIME). This approach demonstrates a reasonable precision rate of 96% when applied to brain tumor MRI images. Therefore, this research introduces a new para diagram of applying AIGC in medical imaging analysis within Consumer Healthcare Electronics (CHE).","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"71 1","pages":"1423-1431"},"PeriodicalIF":10.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10634882/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The intelligent use of artificial intelligence-generated content (AIGC) in magnetic resonance imaging (MRI) analysis is a significant step towards the rapidly advancing field of consumer electronics (CE) used in healthcare. It greatly improves the accuracy and usefulness of diagnostic processes. This paper introduces a novel MRI analysis approach through the lens of AIGC, leveraging physics-informed deep learning (PIDL) models. This integration pioneers a new paradigm in consumer healthcare diagnostics and embeds physics principles into deep learning (DL) models, thus improving interpretability and adherence to physical constraints. Additionally, this method improves the visibility of the healthcare community by integrating explainable AI (XAI) techniques, including gradient-weighted class activation mapping (Grad-CAM) and Local Interpretable Model-Agnostic Explanations (LIME). This approach demonstrates a reasonable precision rate of 96% when applied to brain tumor MRI images. Therefore, this research introduces a new para diagram of applying AIGC in medical imaging analysis within Consumer Healthcare Electronics (CHE).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
XAI 为消费者电子健康提供磁共振成像分析功能
在磁共振成像(MRI)分析中智能使用人工智能生成的内容(AIGC)是朝着医疗保健中使用的快速发展的消费电子(CE)领域迈出的重要一步。它大大提高了诊断过程的准确性和有用性。本文通过AIGC的镜头介绍了一种新的MRI分析方法,利用物理信息深度学习(PIDL)模型。这种集成开创了消费者医疗保健诊断的新范式,并将物理原理嵌入到深度学习(DL)模型中,从而提高了可解释性和对物理约束的遵守。此外,该方法通过集成可解释的AI (XAI)技术,包括梯度加权类激活映射(Grad-CAM)和局部可解释的模型不可知解释(LIME),提高了医疗保健社区的可见性。该方法应用于脑肿瘤MRI图像,准确率达到96%。因此,本研究介绍了在消费者医疗保健电子(CHE)的医学成像分析中应用AIGC的新para图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
9.30%
发文量
59
审稿时长
3.3 months
期刊介绍: The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.
期刊最新文献
2025 Index IEEE Transactions on Consumer Electronics IEEE Consumer Technology Society Officers and Committee Chairs IEEE Consumer Technology Society Board of Governors Guest Editorial Sustainable Computing for Next-Generation Low-Carbon Agricultural Consumer Electronics IEEE Consumer Technology Society Board of Governors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1