The Role of Chemokines in Obesity and Exercise-Induced Weight Loss

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomolecules Pub Date : 2024-09-04 DOI:10.3390/biom14091121
Wenbi He, Huan Wang, Gaoyuan Yang, Lin Zhu, Xiaoguang Liu
{"title":"The Role of Chemokines in Obesity and Exercise-Induced Weight Loss","authors":"Wenbi He, Huan Wang, Gaoyuan Yang, Lin Zhu, Xiaoguang Liu","doi":"10.3390/biom14091121","DOIUrl":null,"url":null,"abstract":"Obesity is a global health crisis that is closely interrelated to many chronic diseases, such as cardiovascular disease and diabetes. This review provides an in-depth analysis of specific chemokines involved in the development of obesity, including C-C motif chemokine ligand 2 (CCL2), CCL3, CCL5, CCL7, C-X-C motif chemokine ligand 8 (CXCL8), CXCL9, CXCL10, CXCL14, and XCL1 (lymphotactin). These chemokines exacerbate the symptoms of obesity by either promoting the inflammatory response or by influencing metabolic pathways and recruiting immune cells. Additionally, the research highlights the positive effect of exercise on modulating chemokine expression in the obese state. Notably, it explores the potential effects of both aerobic exercises and combined aerobic and resistance training in lowering levels of inflammatory mediators, reducing insulin resistance, and improving metabolic health. These findings suggest new strategies for obesity intervention through the modulation of chemokine levels by exercise, providing fresh perspectives and directions for the treatment of obesity and future research.","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14091121","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity is a global health crisis that is closely interrelated to many chronic diseases, such as cardiovascular disease and diabetes. This review provides an in-depth analysis of specific chemokines involved in the development of obesity, including C-C motif chemokine ligand 2 (CCL2), CCL3, CCL5, CCL7, C-X-C motif chemokine ligand 8 (CXCL8), CXCL9, CXCL10, CXCL14, and XCL1 (lymphotactin). These chemokines exacerbate the symptoms of obesity by either promoting the inflammatory response or by influencing metabolic pathways and recruiting immune cells. Additionally, the research highlights the positive effect of exercise on modulating chemokine expression in the obese state. Notably, it explores the potential effects of both aerobic exercises and combined aerobic and resistance training in lowering levels of inflammatory mediators, reducing insulin resistance, and improving metabolic health. These findings suggest new strategies for obesity intervention through the modulation of chemokine levels by exercise, providing fresh perspectives and directions for the treatment of obesity and future research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
趋化因子在肥胖症和运动减肥中的作用
肥胖是一种全球性健康危机,与心血管疾病和糖尿病等多种慢性疾病密切相关。本综述深入分析了与肥胖症发病有关的特定趋化因子,包括 C-C motif chemokine ligand 2 (CCL2)、CCL3、CCL5、CCL7、C-X-C motif chemokine ligand 8 (CXCL8)、CXCL9、CXCL10、CXCL14 和 XCL1 (lymphotactin)。这些趋化因子通过促进炎症反应或影响新陈代谢途径和招募免疫细胞,加剧肥胖症状。此外,研究还强调了运动对调节肥胖状态下趋化因子表达的积极作用。值得注意的是,研究探讨了有氧运动以及有氧和阻力训练相结合对降低炎症介质水平、减少胰岛素抵抗和改善代谢健康的潜在作用。这些发现提出了通过运动调节趋化因子水平来干预肥胖症的新策略,为肥胖症的治疗和未来研究提供了新的视角和方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Chitosan-Modified AgNPs Efficiently Inhibit Swine Coronavirus-Induced Host Cell Infections via Targeting the Spike Protein Impact of Multi-Factor Features on Protein Secondary Structure Prediction Special Issue “Phytohormones 2022–2023” The Effects of Kynurenic Acid in Zebrafish Embryos and Adult Rainbow Trout Sheng Xue Ning as a Novel Agent that Promotes SCF-Driven Hematopoietic Stem/Progenitor Cell Proliferation to Promote Erythropoiesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1