Single-Strain Inoculation of Bacillus subtilis and Rhizobium phaseoli Affects Nitrogen Acquisition of an Improved Mungbean Cultivar

IF 3.4 3区 农林科学 Q2 ENVIRONMENTAL SCIENCES Journal of Soil Science and Plant Nutrition Pub Date : 2024-09-12 DOI:10.1007/s42729-024-02001-7
Lisa Pataczek, Juan Carlos Barroso Armas, Theresa Petsch, Thomas Hilger, Maqshoof Ahmad, Roland Schafleitner, Zahir Ahmad Zahir, Georg Cadisch
{"title":"Single-Strain Inoculation of Bacillus subtilis and Rhizobium phaseoli Affects Nitrogen Acquisition of an Improved Mungbean Cultivar","authors":"Lisa Pataczek, Juan Carlos Barroso Armas, Theresa Petsch, Thomas Hilger, Maqshoof Ahmad, Roland Schafleitner, Zahir Ahmad Zahir, Georg Cadisch","doi":"10.1007/s42729-024-02001-7","DOIUrl":null,"url":null,"abstract":"<p>Plant growth-promoting rhizobacteria (PGPR) increase plant root growth, potentially improving soil nitrogen (N) uptake, and productivity. Legumes, for instance mungbean, could also benefit from a rise in potential infection sites for nodulation, thereby increasing rates of biological N<sub>2</sub> fixation (BNF). Consequently, the objectives of this study were (i) to assess whether PGPR had an effect on mungbean root biomass and if that was linked to N accumulation and productivity; (ii) to identify whether multi-strain inoculation showed greater efficacy in increasing N accumulation and overall productivity than single-strain inoculation; (iii) to test whether N acquisition was based on BNF rather than on soil N uptake. Field trials were conducted in two seasons at the University of Agriculture, Faisalabad with mungbean cultivar NM11 and multi-strain inoculation consisting of <i>Rhizobium phaseoli</i>, <i>Bacillus subtilis</i>, and <i>Pseudomonas fluorescens</i>. The strains were tested additionally in the second season as single-strain inoculation. Multi-strain and inoculation with <i>P. fluorescens</i> alone had no effect on root biomass, total plant-N, BNF or soil N uptake. Inoculation with <i>B. subtilis</i>, however, resulted in significantly increased root dry matter (+ 211 kg ha<sup>− 1</sup>), total dry matter (+ 1.7 t ha<sup>− 1</sup>), and total plant-N (+ 36 kg ha<sup>− 1</sup>). Only inoculation with <i>R. phaseoli</i> enhanced BNF (+ 24%). Yield was not affected by any inoculation. The results suggested that total plant-N was based on soil N uptake rather than on BNF and demonstrated that only single strains affected total N accumulation, pointing to antagonistic mechanisms of the strains in a mixed inoculum.</p>","PeriodicalId":17042,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42729-024-02001-7","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plant growth-promoting rhizobacteria (PGPR) increase plant root growth, potentially improving soil nitrogen (N) uptake, and productivity. Legumes, for instance mungbean, could also benefit from a rise in potential infection sites for nodulation, thereby increasing rates of biological N2 fixation (BNF). Consequently, the objectives of this study were (i) to assess whether PGPR had an effect on mungbean root biomass and if that was linked to N accumulation and productivity; (ii) to identify whether multi-strain inoculation showed greater efficacy in increasing N accumulation and overall productivity than single-strain inoculation; (iii) to test whether N acquisition was based on BNF rather than on soil N uptake. Field trials were conducted in two seasons at the University of Agriculture, Faisalabad with mungbean cultivar NM11 and multi-strain inoculation consisting of Rhizobium phaseoli, Bacillus subtilis, and Pseudomonas fluorescens. The strains were tested additionally in the second season as single-strain inoculation. Multi-strain and inoculation with P. fluorescens alone had no effect on root biomass, total plant-N, BNF or soil N uptake. Inoculation with B. subtilis, however, resulted in significantly increased root dry matter (+ 211 kg ha− 1), total dry matter (+ 1.7 t ha− 1), and total plant-N (+ 36 kg ha− 1). Only inoculation with R. phaseoli enhanced BNF (+ 24%). Yield was not affected by any inoculation. The results suggested that total plant-N was based on soil N uptake rather than on BNF and demonstrated that only single strains affected total N accumulation, pointing to antagonistic mechanisms of the strains in a mixed inoculum.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
枯草芽孢杆菌和根瘤菌的单株接种影响改良绿豆品种的氮素吸收
植物生长促进根瘤菌(PGPR)能促进植物根系生长,从而提高土壤对氮(N)的吸收和生产力。豆科植物(如绿豆)也能从潜在感染点的增加中获益,从而提高生物氮固定(BNF)率。因此,本研究的目标是:(i) 评估 PGPR 是否对绿豆根部生物量有影响,以及这种影响是否与氮积累和生产率有关;(ii) 确定多菌株接种是否比单菌株接种在增加氮积累和总体生产率方面更有效;(iii) 检验氮获取是否基于生物氮固定而非土壤氮吸收。费萨拉巴德农业大学用绿豆栽培品种 NM11 和多菌株接种(包括相叶根瘤菌、枯草芽孢杆菌和荧光假单胞菌)进行了两季田间试验。这些菌株在第二季作为单菌株接种进行了额外测试。多菌株接种和单独接种荧光假单胞菌对根生物量、植物氮总量、BNF 或土壤氮吸收量没有影响。然而,接种枯草芽孢杆菌可显著增加根干物质(+ 211 kg ha-1)、总干物质(+ 1.7 t ha-1)和总植物氮(+ 36 kg ha-1)。只有接种 R. phaseoli 能提高 BNF(+ 24%)。任何接种都不会影响产量。结果表明,植物总氮是基于土壤对氮的吸收,而不是基于 BNF,而且只有单一菌株会影响总氮的积累,这表明菌株在混合接种物中的拮抗机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Soil Science and Plant Nutrition
Journal of Soil Science and Plant Nutrition Agricultural and Biological Sciences-Soil Science
CiteScore
5.90
自引率
10.30%
发文量
331
审稿时长
9 months
期刊介绍: The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science. Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration. Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies. Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome. The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.
期刊最新文献
Assessment of Management Practices for Improving Productivity, Profitability, and Energy-Carbon-Water Use Efficiency of Intensive Rice-toria-Sweet Corn System in Eastern India Enhancing Photosynthesis Pigment, Protein Content, Nutrient Uptake and Yield in Maize (Zea mays L.) Cultivars Using Vermicompost, Livestock Manure and Azotobacter chroococcum Phosphorus Solubilizing Microorganisms: An Eco-Friendly Approach for Sustainable Plant Health and Bioremediation Effect of Exogenous Chitosan on Physiological Characteristics, Photosynthetic Parameters, and Antioxidant Systems of Maize Seedlings Under Salt Stress Auxin-Mediated Modulation of Maize Rhizosphere Microbiome: Insights from Azospirillum Inoculation and Indole-3-Acetic Acid Treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1