The Classical Boundary Blow-Up Solutions for a Class of Gaussian Curvature Equations

Haitao Wan
{"title":"The Classical Boundary Blow-Up Solutions for a Class of Gaussian Curvature Equations","authors":"Haitao Wan","doi":"10.1007/s12220-024-01785-5","DOIUrl":null,"url":null,"abstract":"<p>In this article, we consider the Gaussian curvature problem </p><span>$$\\begin{aligned} \\frac{\\hbox {det}(D^{2}u)}{(1+|\\nabla u|^{2})^{\\frac{N+2}{2}}}=b(x)f(u)g(|\\nabla u|)\\;\\hbox {in}\\;\\Omega ,\\,u=+\\infty \\;\\hbox {on}\\;\\partial \\Omega , \\end{aligned}$$</span><p>where <span>\\(\\Omega \\)</span> is a bounded smooth uniformly convex domain in <span>\\({\\mathbb {R}}^{N}\\)</span> with <span>\\(N\\ge 2\\)</span>, <span>\\(b\\in \\mathrm C^{\\infty }(\\Omega )\\)</span> is positive in <span>\\(\\Omega \\)</span> and may be singular or vanish on <span>\\(\\partial \\Omega \\)</span>, <span>\\(f\\in C^{\\infty }[0, +\\infty )\\)</span> (or <span>\\(f\\in C^{\\infty }({\\mathbb {R}})\\)</span>) is positive and increasing on <span>\\([0, +\\infty )\\)</span> <span>\\((\\hbox {or } {\\mathbb {R}})\\)</span>, <span>\\(g\\in C^{\\infty }[0, +\\infty )\\)</span> is positive on <span>\\([0, +\\infty )\\)</span>. We first establish the existence and global estimates of <span>\\(C^{\\infty }\\)</span>-strictly convex solutions to this problem by constructing some fine coupling (limit) structures on <i>f</i> and <i>g</i>. Our results (Theorems 2.1–2.3) clarify the influence of properties of <i>b</i> (on the boundary <span>\\(\\partial \\Omega \\)</span>) on the existence and global estimates, and reveal the relationship between the solutions of the above problem and some corresponding problems (some details see page 6–7). Then, the nonexistence of convex solutions and strictly convex solutions are also obtained (see Theorems 2.4 and C). Finally, we study the principal expansions of strictly convex solutions near <span>\\(\\partial \\Omega \\)</span> by analyzing some coupling structure and using the Karamata regular and rapid variation theories.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01785-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we consider the Gaussian curvature problem

$$\begin{aligned} \frac{\hbox {det}(D^{2}u)}{(1+|\nabla u|^{2})^{\frac{N+2}{2}}}=b(x)f(u)g(|\nabla u|)\;\hbox {in}\;\Omega ,\,u=+\infty \;\hbox {on}\;\partial \Omega , \end{aligned}$$

where \(\Omega \) is a bounded smooth uniformly convex domain in \({\mathbb {R}}^{N}\) with \(N\ge 2\), \(b\in \mathrm C^{\infty }(\Omega )\) is positive in \(\Omega \) and may be singular or vanish on \(\partial \Omega \), \(f\in C^{\infty }[0, +\infty )\) (or \(f\in C^{\infty }({\mathbb {R}})\)) is positive and increasing on \([0, +\infty )\) \((\hbox {or } {\mathbb {R}})\), \(g\in C^{\infty }[0, +\infty )\) is positive on \([0, +\infty )\). We first establish the existence and global estimates of \(C^{\infty }\)-strictly convex solutions to this problem by constructing some fine coupling (limit) structures on f and g. Our results (Theorems 2.1–2.3) clarify the influence of properties of b (on the boundary \(\partial \Omega \)) on the existence and global estimates, and reveal the relationship between the solutions of the above problem and some corresponding problems (some details see page 6–7). Then, the nonexistence of convex solutions and strictly convex solutions are also obtained (see Theorems 2.4 and C). Finally, we study the principal expansions of strictly convex solutions near \(\partial \Omega \) by analyzing some coupling structure and using the Karamata regular and rapid variation theories.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类高斯曲率方程的经典边界炸裂解
在本文中,我们将考虑高斯曲率问题 $$\begin{aligned}\frac{hbox {det}(D^{2}u)}{(1+|\nabla u|^{2})^{\frac{N+2}{2}}=b(x)f(u)g(|\nabla u|)\;\hbox {in\;\Omega ,\,u=+\infty \;\hbox {on}\;\其中,\(\Omega \)是({\mathbb {R}}^{N}\) 中一个有界的光滑均匀凸域,带有\(N\ge 2\)、\b\in C^{infty }(\Omega )\) 在\(\Omega\)中是正值,在\(\partial \Omega \)上可能是奇异的或消失的、\f\in C^{infty }[0, +\infty )(或 f\in C^{infty }({\mathbb {R}})/) 在 ([0, +\infty ))上是正的并且递增的。\((\hbox{or}{\mathbb{R}})\)、\(g\in C^{infty }[0, +\infty )\)在\([0, +\infty )\)上是正的。我们的结果(定理 2.1-2.3)阐明了 b 的性质(在边界上)对存在性和全局估计的影响,并揭示了上述问题的解与一些相应问题之间的关系(详见第 6-7 页)。然后,还得到了凸解和严格凸解的不存在性(见定理 2.4 和 C)。最后,我们通过分析一些耦合结构,利用卡拉马塔正则和快速变化理论,研究了严格凸解在\(\partial \Omega \)附近的主展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Singular p(x)-Laplace Equations with Lower-Order Terms and a Hardy Potential Radial Positive Solutions for Semilinear Elliptic Problems with Linear Gradient Term in $$\mathbb {R}^N$$ Existence and Uniqueness of Limits at Infinity for Bounded Variation Functions The Projectivity of Compact Kähler Manifolds with Mixed Curvature Condition Brunn–Minkowski Inequalities for Sprays on Surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1