Snow Avalanche Susceptibility Mapping of Transportation Corridors Based on Coupled Certainty Factor and Geodetector Models

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Atmosphere Pub Date : 2024-09-09 DOI:10.3390/atmos15091096
Jie Liu, Xiliang Sun, Qiang Guo, Zhiwei Yang, Bin Wang, Senmu Yao, Haiwei Xie, Changtao Hu
{"title":"Snow Avalanche Susceptibility Mapping of Transportation Corridors Based on Coupled Certainty Factor and Geodetector Models","authors":"Jie Liu, Xiliang Sun, Qiang Guo, Zhiwei Yang, Bin Wang, Senmu Yao, Haiwei Xie, Changtao Hu","doi":"10.3390/atmos15091096","DOIUrl":null,"url":null,"abstract":"Avalanche susceptibility assessment is a core aspect of regional avalanche early warning and risk analysis and is of great significance for disaster prevention and mitigation on proposed highways. Using sky–ground integration investigation, 83 avalanche points within the G219 Wen Quan to Horgos transportation corridor were identified, and the avalanche hazard susceptibility of the transportation corridor was partitioned using the certainty factor (CF) model and the coupled coefficient of the certainty factor–Geodetector (CF-GD) model. The CF model analysis presented nine elements of natural conditions which influence avalanche development; then, by applying the Geodetector for each of the factors, a weighting coefficient was given depending on its importance for avalanche occurrence. The results demonstrate the following: (1) According to the receiver operating characteristic (ROC) curve used to verify the accuracy, the area under the ROC curve (AUC) value for the CF-GD coupled model is 0.889, which is better than the value of 0.836 of the CF model’s evaluation accuracy, and the coupled model improves the accuracy by about 6.34% compared with the single model, indicating that the coupled model is more accurate. The results provide avalanche prevention and control recommendations for the G219 Wen Quan to Horgos transportation corridor. (2) The slope orientation, slope gradient, and mean winter temperature gradient are the main factors for avalanche development in the study area. (3) The results were validated based on the AUC values. The AUCs of the CF-GD coupled model and the CF model were 0.889 and 0.836, respectively. The accuracy of the coupled model was improved by about 6.34% compared to the single model, and the coupled CF-GD model was more accurate. The results provide avalanche control recommendations for the G219 Wen Quan to Horgos transportation corridor.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"30 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091096","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Avalanche susceptibility assessment is a core aspect of regional avalanche early warning and risk analysis and is of great significance for disaster prevention and mitigation on proposed highways. Using sky–ground integration investigation, 83 avalanche points within the G219 Wen Quan to Horgos transportation corridor were identified, and the avalanche hazard susceptibility of the transportation corridor was partitioned using the certainty factor (CF) model and the coupled coefficient of the certainty factor–Geodetector (CF-GD) model. The CF model analysis presented nine elements of natural conditions which influence avalanche development; then, by applying the Geodetector for each of the factors, a weighting coefficient was given depending on its importance for avalanche occurrence. The results demonstrate the following: (1) According to the receiver operating characteristic (ROC) curve used to verify the accuracy, the area under the ROC curve (AUC) value for the CF-GD coupled model is 0.889, which is better than the value of 0.836 of the CF model’s evaluation accuracy, and the coupled model improves the accuracy by about 6.34% compared with the single model, indicating that the coupled model is more accurate. The results provide avalanche prevention and control recommendations for the G219 Wen Quan to Horgos transportation corridor. (2) The slope orientation, slope gradient, and mean winter temperature gradient are the main factors for avalanche development in the study area. (3) The results were validated based on the AUC values. The AUCs of the CF-GD coupled model and the CF model were 0.889 and 0.836, respectively. The accuracy of the coupled model was improved by about 6.34% compared to the single model, and the coupled CF-GD model was more accurate. The results provide avalanche control recommendations for the G219 Wen Quan to Horgos transportation corridor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于确定性因子和地质探测器耦合模型的交通走廊雪崩易感性绘图
雪崩易发性评估是区域雪崩预警和风险分析的核心内容,对拟建公路的防灾减灾具有重要意义。通过天地一体化调查,确定了 G219 温泉至霍尔果斯交通走廊内的 83 个雪崩点,并利用确定性因子(CF)模型和确定性因子-地质探测器(CF-GD)耦合系数模型对交通走廊的雪崩灾害易感性进行了分区。CF 模型分析提出了影响雪崩发展的九个自然条件要素;然后,通过对每个要素应用地质探测器,根据其对雪崩发生的重要性给出了加权系数。结果表明(1)根据验证精度的接收器工作特征曲线(ROC),CF-GD 耦合模型的 ROC 曲线下面积(AUC)值为 0.889,优于 CF 模型评估精度的 0.836 值,耦合模型比单一模型的精度提高了约 6.34%,表明耦合模型的精度更高。结果为 G219 温泉至霍尔果斯交通走廊的雪崩防治提供了建议。(2)坡向、坡度和冬季平均温度梯度是研究区域雪崩发生的主要因素。(3) 根据 AUC 值对结果进行了验证。CF-GD 耦合模型和 CF 模型的 AUC 值分别为 0.889 和 0.836。与单一模型相比,耦合模型的精度提高了约 6.34%,而 CF-GD 耦合模型的精度更高。研究结果为 G219 温泉至霍尔果斯交通走廊提供了雪崩控制建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California Radon Equilibrium Factor and the Assessment of the Annual Effective Dose at Underground Workplaces Risk Assessment of Community-Scale High-Temperature and Rainstorm Waterlogging Disasters: A Case Study of the Dongsi Community in Beijing Investigating Radon Concentrations in the Cango Cave, South Africa Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1