Iurii Cherniak, Irina Zakharenkova, Scott Gleason, Douglas Hunt
{"title":"First Detections of Ionospheric Plasma Density Irregularities from GOES Geostationary GPS Observations during Geomagnetic Storms","authors":"Iurii Cherniak, Irina Zakharenkova, Scott Gleason, Douglas Hunt","doi":"10.3390/atmos15091065","DOIUrl":null,"url":null,"abstract":"In this study, we present the first results of detecting ionospheric irregularities using non-typical GPS observations recorded onboard the Geostationary Operational Environmental Satellites (GOES) mission operating at ~35,800 km altitude. Sitting above the GPS constellation, GOES can track GPS signals only from GPS transmitters on the opposite side of the Earth in a rather unique geometry. Although GPS receivers onboard GOES are primarily designed for navigation and were not configured for ionospheric soundings, these GPS measurements along links that traverse the Earth’s ionosphere can be used to retrieve information about ionospheric electron density. Using the radio occultation (RO) technique applied to GPS measurements from the GOES–16, we analyzed variations in the ionospheric total electron content (TEC) on the links between the GPS transmitter and geostationary GOES GPS receiver. For case-studies of major geomagnetic storms that occurred in September 2017 and August 2018, we detected and analyzed the signatures of storm-induced ionospheric irregularities in novel and promising geostationary GOES GPS observations. We demonstrated that the presence of ionospheric irregularities near the GOES GPS RO sounding field of view during geomagnetic disturbances was confirmed by ground-based GNSS observations. The use of RO observations from geostationary orbit provides new opportunities for monitoring ionospheric irregularities and ionospheric density.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"23 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091065","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we present the first results of detecting ionospheric irregularities using non-typical GPS observations recorded onboard the Geostationary Operational Environmental Satellites (GOES) mission operating at ~35,800 km altitude. Sitting above the GPS constellation, GOES can track GPS signals only from GPS transmitters on the opposite side of the Earth in a rather unique geometry. Although GPS receivers onboard GOES are primarily designed for navigation and were not configured for ionospheric soundings, these GPS measurements along links that traverse the Earth’s ionosphere can be used to retrieve information about ionospheric electron density. Using the radio occultation (RO) technique applied to GPS measurements from the GOES–16, we analyzed variations in the ionospheric total electron content (TEC) on the links between the GPS transmitter and geostationary GOES GPS receiver. For case-studies of major geomagnetic storms that occurred in September 2017 and August 2018, we detected and analyzed the signatures of storm-induced ionospheric irregularities in novel and promising geostationary GOES GPS observations. We demonstrated that the presence of ionospheric irregularities near the GOES GPS RO sounding field of view during geomagnetic disturbances was confirmed by ground-based GNSS observations. The use of RO observations from geostationary orbit provides new opportunities for monitoring ionospheric irregularities and ionospheric density.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.