First Detections of Ionospheric Plasma Density Irregularities from GOES Geostationary GPS Observations during Geomagnetic Storms

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Atmosphere Pub Date : 2024-09-03 DOI:10.3390/atmos15091065
Iurii Cherniak, Irina Zakharenkova, Scott Gleason, Douglas Hunt
{"title":"First Detections of Ionospheric Plasma Density Irregularities from GOES Geostationary GPS Observations during Geomagnetic Storms","authors":"Iurii Cherniak, Irina Zakharenkova, Scott Gleason, Douglas Hunt","doi":"10.3390/atmos15091065","DOIUrl":null,"url":null,"abstract":"In this study, we present the first results of detecting ionospheric irregularities using non-typical GPS observations recorded onboard the Geostationary Operational Environmental Satellites (GOES) mission operating at ~35,800 km altitude. Sitting above the GPS constellation, GOES can track GPS signals only from GPS transmitters on the opposite side of the Earth in a rather unique geometry. Although GPS receivers onboard GOES are primarily designed for navigation and were not configured for ionospheric soundings, these GPS measurements along links that traverse the Earth’s ionosphere can be used to retrieve information about ionospheric electron density. Using the radio occultation (RO) technique applied to GPS measurements from the GOES–16, we analyzed variations in the ionospheric total electron content (TEC) on the links between the GPS transmitter and geostationary GOES GPS receiver. For case-studies of major geomagnetic storms that occurred in September 2017 and August 2018, we detected and analyzed the signatures of storm-induced ionospheric irregularities in novel and promising geostationary GOES GPS observations. We demonstrated that the presence of ionospheric irregularities near the GOES GPS RO sounding field of view during geomagnetic disturbances was confirmed by ground-based GNSS observations. The use of RO observations from geostationary orbit provides new opportunities for monitoring ionospheric irregularities and ionospheric density.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"23 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091065","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we present the first results of detecting ionospheric irregularities using non-typical GPS observations recorded onboard the Geostationary Operational Environmental Satellites (GOES) mission operating at ~35,800 km altitude. Sitting above the GPS constellation, GOES can track GPS signals only from GPS transmitters on the opposite side of the Earth in a rather unique geometry. Although GPS receivers onboard GOES are primarily designed for navigation and were not configured for ionospheric soundings, these GPS measurements along links that traverse the Earth’s ionosphere can be used to retrieve information about ionospheric electron density. Using the radio occultation (RO) technique applied to GPS measurements from the GOES–16, we analyzed variations in the ionospheric total electron content (TEC) on the links between the GPS transmitter and geostationary GOES GPS receiver. For case-studies of major geomagnetic storms that occurred in September 2017 and August 2018, we detected and analyzed the signatures of storm-induced ionospheric irregularities in novel and promising geostationary GOES GPS observations. We demonstrated that the presence of ionospheric irregularities near the GOES GPS RO sounding field of view during geomagnetic disturbances was confirmed by ground-based GNSS observations. The use of RO observations from geostationary orbit provides new opportunities for monitoring ionospheric irregularities and ionospheric density.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地磁暴期间 GOES 地球静止 GPS 观测首次探测到电离层等离子体密度不规则现象
在本研究中,我们首次介绍了利用在约 35,800 公里高度运行的地球静止业务环境卫星(GOES)飞行任务上记录的非典型 GPS 观测数据探测电离层不规则现象的结果。地球同步实用环境卫星位于全球定位系统星座之上,只能以一种相当独特的几何形状跟踪来自地球另一侧全球定位系统发射机的全球定位系统信号。虽然全球定位系统上的 GPS 接收器主要用于导航,并不是为电离层探测而配置的,但这些沿着穿越地球电离层的链路进行的 GPS 测量可用来检索有关电离层电子密度的信息。我们将无线电掩星(RO)技术应用于 GOES-16 的全球定位系统测量,分析了全球定位系统发射机和地球静止 GOES 全球定位系统接收机之间链路上电离层电子总含量(TEC)的变化。在对2017年9月和2018年8月发生的重大地磁暴进行案例研究时,我们检测并分析了新型和有希望的地球静止GOES全球定位系统观测数据中风暴引起的电离层不规则现象的特征。我们证明,在地磁扰动期间,GOES GPS RO 探测视场附近电离层不规则现象的存在得到了地基全球导航卫星系统观测的证实。使用地球静止轨道 RO 观测为监测电离层不规则性和电离层密度提供了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California Radon Equilibrium Factor and the Assessment of the Annual Effective Dose at Underground Workplaces Risk Assessment of Community-Scale High-Temperature and Rainstorm Waterlogging Disasters: A Case Study of the Dongsi Community in Beijing Investigating Radon Concentrations in the Cango Cave, South Africa Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1