Spectral Map for Slow Collective Variables, Markovian Dynamics, and Transition State Ensembles

Jakub Rydzewski
{"title":"Spectral Map for Slow Collective Variables, Markovian Dynamics, and Transition State Ensembles","authors":"Jakub Rydzewski","doi":"arxiv-2409.06428","DOIUrl":null,"url":null,"abstract":"Understanding the behavior of complex molecular systems is a fundamental\nproblem in physical chemistry. To describe the long-time dynamics of such\nsystems, which is responsible for their most informative characteristics, we\ncan identify a few slow collective variables (CVs) while treating the remaining\nfast variables as thermal noise. This enables us to simplify the dynamics and\ntreat it as diffusion in a free-energy landscape spanned by slow CVs,\neffectively rendering the dynamics Markovian. Our recent statistical learning\ntechnique, spectral map [Rydzewski, J. Phys. Chem. Lett. 2023, 14, 22,\n5216-5220], explores this strategy to learn slow CVs by maximizing a spectral\ngap of a transition matrix. In this work, we introduce several advancements\ninto our framework, using a high-dimensional reversible folding process of a\nprotein as an example. We implement an algorithm for coarse-graining Markov\ntransition matrices to partition the reduced space of slow CVs kinetically and\nuse it to define a transition state ensemble. We show that slow CVs learned by\nspectral map closely approach the Markovian limit for an overdamped diffusion.\nWe demonstrate that coordinate-dependent diffusion coefficients only slightly\naffect the constructed free-energy landscapes. Finally, we present how spectral\nmap can be used to quantify the importance of features and compare slow CVs\nwith structural descriptors commonly used in protein folding. Overall, we\ndemonstrate that a single slow CV learned by spectral map can be used as a\nphysical reaction coordinate to capture essential characteristics of protein\nfolding.","PeriodicalId":501304,"journal":{"name":"arXiv - PHYS - Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the behavior of complex molecular systems is a fundamental problem in physical chemistry. To describe the long-time dynamics of such systems, which is responsible for their most informative characteristics, we can identify a few slow collective variables (CVs) while treating the remaining fast variables as thermal noise. This enables us to simplify the dynamics and treat it as diffusion in a free-energy landscape spanned by slow CVs, effectively rendering the dynamics Markovian. Our recent statistical learning technique, spectral map [Rydzewski, J. Phys. Chem. Lett. 2023, 14, 22, 5216-5220], explores this strategy to learn slow CVs by maximizing a spectral gap of a transition matrix. In this work, we introduce several advancements into our framework, using a high-dimensional reversible folding process of a protein as an example. We implement an algorithm for coarse-graining Markov transition matrices to partition the reduced space of slow CVs kinetically and use it to define a transition state ensemble. We show that slow CVs learned by spectral map closely approach the Markovian limit for an overdamped diffusion. We demonstrate that coordinate-dependent diffusion coefficients only slightly affect the constructed free-energy landscapes. Finally, we present how spectral map can be used to quantify the importance of features and compare slow CVs with structural descriptors commonly used in protein folding. Overall, we demonstrate that a single slow CV learned by spectral map can be used as a physical reaction coordinate to capture essential characteristics of protein folding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
慢速集合变量、马尔可夫动力学和过渡态集合的谱图
理解复杂分子系统的行为是物理化学的一个基本问题。要描述这类系统的长期动力学特征(这是其信息量最大的特征),我们可以识别少数慢速集体变量(CV),同时将剩余的快速变量视为热噪声。这样,我们就能简化动力学,将其视为慢速集体变量所跨越的自由能景观中的扩散,从而有效地使动力学马尔可夫化。我们最近的统计学习技术--谱图[Rydzewski,J. Phys. Chem. Lett.在这项工作中,我们以蛋白质的高维可逆折叠过程为例,介绍了我们框架的几项进展。我们实施了一种粗粒化马尔可夫转换矩阵算法,从动力学角度划分了慢速 CV 的缩小空间,并利用它定义了一个转换状态集合。我们证明,通过光谱图学习到的慢速 CV 非常接近过阻尼扩散的马尔可夫极限。最后,我们介绍了如何利用光谱图量化特征的重要性,并将慢 CV 与蛋白质折叠中常用的结构描述符进行了比较。总之,我们证明了通过光谱图学习到的单个慢速 CV 可以用作物理反应坐标来捕捉蛋白质折叠的基本特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase-cycling and double-quantum two-dimensional electronic spectroscopy using a common-path birefringent interferometer Developing Orbital-Dependent Corrections for the Non-Additive Kinetic Energy in Subsystem Density Functional Theory Thermodynamics of mixtures with strongly negative deviations from Raoult's law. XV. Permittivities and refractive indices for 1-alkanol + n-hexylamine systems at (293.15-303.15) K. Application of the Kirkwood-Fröhlich model Mutual neutralization of C$_{60}^+$ and C$_{60}^-$ ions: Excitation energies and state-selective rate coefficients All-in-one foundational models learning across quantum chemical levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1