A gas sensing neural circuit for an olfactory neuron

IF 2.4 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Communications in Theoretical Physics Pub Date : 2024-08-21 DOI:10.1088/1572-9494/ad595d
Xi-Kui Hu, Song Zhu, Juan Yang, Zhao Yao, Ping Zhou, Jun Ma
{"title":"A gas sensing neural circuit for an olfactory neuron","authors":"Xi-Kui Hu, Song Zhu, Juan Yang, Zhao Yao, Ping Zhou, Jun Ma","doi":"10.1088/1572-9494/ad595d","DOIUrl":null,"url":null,"abstract":"A gas sensor can convert external gas concentration or species into electric voltage or current signals by physical adsorption or chemical changes. As a result, a gas sensor in a nonlinear circuit can be used as a sensitive sensor for detecting external gas signals from the olfactory system. In this paper, a gas sensor and a field-effect transistor are incorporated into a simple FithzHugh–Nagumo neural circuit for capturing and encoding external gas signals. An improved functional neural circuit is obtained, and the effect of gas concentration, gas species and neuronal activity can be discerned as the gate voltage, threshold voltage and activation coefficient of the field-effect transistor, respectively. The gas concentration can affect the neural activities from quiescent to normal working and, finally, to saturation state in bursting, spiking, periodic and chaotic firings with different frequencies. The effects of gas species and neuronal activity on the firing state can also be achieved in this functional neural circuit. In addition, variations in the gate voltage, threshold voltage and activation coefficient can cause switching between different firing modes. These results can be helpful in designing artificial olfactory devices for bionic gas recognition and other coupled systems arising in applied sciences.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad595d","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A gas sensor can convert external gas concentration or species into electric voltage or current signals by physical adsorption or chemical changes. As a result, a gas sensor in a nonlinear circuit can be used as a sensitive sensor for detecting external gas signals from the olfactory system. In this paper, a gas sensor and a field-effect transistor are incorporated into a simple FithzHugh–Nagumo neural circuit for capturing and encoding external gas signals. An improved functional neural circuit is obtained, and the effect of gas concentration, gas species and neuronal activity can be discerned as the gate voltage, threshold voltage and activation coefficient of the field-effect transistor, respectively. The gas concentration can affect the neural activities from quiescent to normal working and, finally, to saturation state in bursting, spiking, periodic and chaotic firings with different frequencies. The effects of gas species and neuronal activity on the firing state can also be achieved in this functional neural circuit. In addition, variations in the gate voltage, threshold voltage and activation coefficient can cause switching between different firing modes. These results can be helpful in designing artificial olfactory devices for bionic gas recognition and other coupled systems arising in applied sciences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嗅觉神经元的气体感应神经回路
气体传感器可通过物理吸附或化学变化将外部气体浓度或种类转换为电压或电流信号。因此,非线性电路中的气体传感器可用作灵敏的传感器,用于检测来自嗅觉系统的外部气体信号。本文将气体传感器和场效应晶体管整合到一个简单的 FithzHugh-Nagumo 神经回路中,用于捕捉和编码外部气体信号。通过场效应晶体管的栅极电压、阈值电压和活化系数,可以分别辨别气体浓度、气体种类和神经元活动的影响,从而得到一个改进的功能神经回路。气体浓度会影响神经元活动从静态到正常工作,最后到饱和状态的不同频率的猝发、尖峰、周期和混沌搏动。气体种类和神经元活动对发射状态的影响也可以在这个功能神经回路中实现。此外,栅极电压、阈值电压和激活系数的变化可导致不同点火模式之间的切换。这些结果有助于设计用于仿生气体识别的人工嗅觉装置以及应用科学中出现的其他耦合系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications in Theoretical Physics
Communications in Theoretical Physics 物理-物理:综合
CiteScore
5.20
自引率
3.20%
发文量
6110
审稿时长
4.2 months
期刊介绍: Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of: mathematical physics quantum physics and quantum information particle physics and quantum field theory nuclear physics gravitation theory, astrophysics and cosmology atomic, molecular, optics (AMO) and plasma physics, chemical physics statistical physics, soft matter and biophysics condensed matter theory others Certain new interdisciplinary subjects are also incorporated.
期刊最新文献
Riemann–Hilbert approach and soliton solutions for the Lakshmanan–Porsezian–Daniel equation with nonzero boundary conditions Towards an efficient variational quantum algorithm for solving linear equations Path integral formalism of open quantum systems with non-diagonal system-bath coupling N = 2 a = 1 supersymmetric KdV equation and its Darboux–Bäcklund transformations Simulation study of multi-layer titanium nitride nanodisk broadband solar absorber and thermal emitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1