{"title":"Enriching building function classification using Large Language Model embeddings of OpenStreetMap Tags","authors":"Abdulkadir Memduhoğlu, Nir Fulman, Alexander Zipf","doi":"10.1007/s12145-024-01463-8","DOIUrl":null,"url":null,"abstract":"<p>Automated methods for building function classification are essential due to restricted access to official building use data. Existing approaches utilize traditional Natural Language Processing (NLP) techniques to analyze textual data representing human activities, but they struggle with the ambiguity of semantic contexts. In contrast, Large Language Models (LLMs) excel at capturing the broader context of language. This study presents a method that uses LLMs to interpret OpenStreetMap (OSM) tags, combining them with physical and spatial metrics to classify urban building functions. We employed an XGBoost model trained on 32 features from six city datasets to classify urban building functions, demonstrating varying F1 scores from 67.80% in Madrid to 91.59% in Liberec. Integrating LLM embeddings enhanced the model's performance by an average of 12.5% across all cities compared to models using only physical and spatial metrics. Moreover, integrating LLM embeddings improved the model's performance by 6.2% over models that incorporate OSM tags as one-hot encodings, and when predicting based solely on OSM tags, the LLM approach outperforms traditional NLP methods in 5 out of 6 cities. These results suggest that deep contextual understanding, as captured by LLM embeddings more effectively than traditional NLP approaches, is beneficial for classification. Finally, a Pearson correlation coefficient of approximately -0.858 between population density and F1-scores suggests that denser areas present greater classification challenges. Moving forward, we recommend investigation into discrepancies in model performance across and within cities, aiming to identify generalized models.</p>","PeriodicalId":49318,"journal":{"name":"Earth Science Informatics","volume":"2 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Informatics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12145-024-01463-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Automated methods for building function classification are essential due to restricted access to official building use data. Existing approaches utilize traditional Natural Language Processing (NLP) techniques to analyze textual data representing human activities, but they struggle with the ambiguity of semantic contexts. In contrast, Large Language Models (LLMs) excel at capturing the broader context of language. This study presents a method that uses LLMs to interpret OpenStreetMap (OSM) tags, combining them with physical and spatial metrics to classify urban building functions. We employed an XGBoost model trained on 32 features from six city datasets to classify urban building functions, demonstrating varying F1 scores from 67.80% in Madrid to 91.59% in Liberec. Integrating LLM embeddings enhanced the model's performance by an average of 12.5% across all cities compared to models using only physical and spatial metrics. Moreover, integrating LLM embeddings improved the model's performance by 6.2% over models that incorporate OSM tags as one-hot encodings, and when predicting based solely on OSM tags, the LLM approach outperforms traditional NLP methods in 5 out of 6 cities. These results suggest that deep contextual understanding, as captured by LLM embeddings more effectively than traditional NLP approaches, is beneficial for classification. Finally, a Pearson correlation coefficient of approximately -0.858 between population density and F1-scores suggests that denser areas present greater classification challenges. Moving forward, we recommend investigation into discrepancies in model performance across and within cities, aiming to identify generalized models.
期刊介绍:
The Earth Science Informatics [ESIN] journal aims at rapid publication of high-quality, current, cutting-edge, and provocative scientific work in the area of Earth Science Informatics as it relates to Earth systems science and space science. This includes articles on the application of formal and computational methods, computational Earth science, spatial and temporal analyses, and all aspects of computer applications to the acquisition, storage, processing, interchange, and visualization of data and information about the materials, properties, processes, features, and phenomena that occur at all scales and locations in the Earth system’s five components (atmosphere, hydrosphere, geosphere, biosphere, cryosphere) and in space (see "About this journal" for more detail). The quarterly journal publishes research, methodology, and software articles, as well as editorials, comments, and book and software reviews. Review articles of relevant findings, topics, and methodologies are also considered.