Quantifying Seasonal Weather Risk in Indian Markets: Stochastic Model for Risk-Averse State-Specific Temperature Derivative Pricing

Soumil Hooda, Shubham Sharma, Kunal Bansal
{"title":"Quantifying Seasonal Weather Risk in Indian Markets: Stochastic Model for Risk-Averse State-Specific Temperature Derivative Pricing","authors":"Soumil Hooda, Shubham Sharma, Kunal Bansal","doi":"arxiv-2409.04541","DOIUrl":null,"url":null,"abstract":"This technical report presents a stochastic framework for pricing temperature\nderivatives in Indian markets accounting for both monsoon and winter seasons.\nUtilising historical temperature and electricity consumption data from 12\nIndian states we develop a model based on a modified mean-reverting\nOrnstein-Uhlenbeck process and employ Monte Carlo simulations for pricing. Our\nanalysis reveals significant variations in option pricing across states with\nmonsoon call options ranging from 10.78 USD to 182.82 USD and winter put\noptions from 48.65 USD to 194.99 USD. The introduction of a risk aversion\nparameter shows substantial impacts on pricing leading to an increase of up to\n416 percentage in option prices for certain states. Sensitivity analyses\nindicate that option prices are more responsive to changes in volatility than\nto mean reversion rates. Additionally extreme weather scenarios can shift\noption prices by up to 409 percentage during heatwaves and decrease by 60\npercentage during cold waves. These findings emphasise the importance of\nstate-specific and season-specific approaches in temperature derivative pricing\nhighlighting the need for tailored risk management strategies in India's\ndiverse climate.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This technical report presents a stochastic framework for pricing temperature derivatives in Indian markets accounting for both monsoon and winter seasons. Utilising historical temperature and electricity consumption data from 12 Indian states we develop a model based on a modified mean-reverting Ornstein-Uhlenbeck process and employ Monte Carlo simulations for pricing. Our analysis reveals significant variations in option pricing across states with monsoon call options ranging from 10.78 USD to 182.82 USD and winter put options from 48.65 USD to 194.99 USD. The introduction of a risk aversion parameter shows substantial impacts on pricing leading to an increase of up to 416 percentage in option prices for certain states. Sensitivity analyses indicate that option prices are more responsive to changes in volatility than to mean reversion rates. Additionally extreme weather scenarios can shift option prices by up to 409 percentage during heatwaves and decrease by 60 percentage during cold waves. These findings emphasise the importance of state-specific and season-specific approaches in temperature derivative pricing highlighting the need for tailored risk management strategies in India's diverse climate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量化印度市场的季节性天气风险:风险规避型特定州气温衍生品定价的随机模型
利用印度 12 个邦的历史气温和电力消费数据,我们建立了一个基于修正的均值回复奥恩斯坦-乌伦贝克过程的模型,并采用蒙特卡罗模拟进行定价。我们的分析表明,各州的期权定价存在显著差异,季风看涨期权的价格从 10.78 美元到 182.82 美元不等,冬季看跌期权的价格从 48.65 美元到 194.99 美元不等。风险规避参数的引入对定价产生了重大影响,导致某些州的期权价格上涨高达 416%。敏感性分析表明,期权价格对波动率变化的反应比对均值回归率的反应更大。此外,在极端天气情况下,热浪会使期权价格上涨 409%,寒潮会使期权价格下跌 60%。这些发现强调了针对具体国家和具体季节的温度衍生品定价方法的重要性,突出了在印度多样的气候条件下制定有针对性的风险管理战略的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DeFi Arbitrage in Hedged Liquidity Tokens Decomposition Pipeline for Large-Scale Portfolio Optimization with Applications to Near-Term Quantum Computing Research and Design of a Financial Intelligent Risk Control Platform Based on Big Data Analysis and Deep Machine Learning Credit Spreads' Term Structure: Stochastic Modeling with CIR++ Intensity Claims processing and costs under capacity constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1