Pareto-Optimal Peer-to-Peer Risk Sharing with Robust Distortion Risk Measures

Mario Ghossoub, Michael B. Zhu, Wing Fung Chong
{"title":"Pareto-Optimal Peer-to-Peer Risk Sharing with Robust Distortion Risk Measures","authors":"Mario Ghossoub, Michael B. Zhu, Wing Fung Chong","doi":"arxiv-2409.05103","DOIUrl":null,"url":null,"abstract":"We study Pareto optimality in a decentralized peer-to-peer risk-sharing\nmarket where agents' preferences are represented by robust distortion risk\nmeasures that are not necessarily convex. We obtain a characterization of\nPareto-optimal allocations of the aggregate risk in the market, and we show\nthat the shape of the allocations depends primarily on each agent's assessment\nof the tail of the aggregate risk. We quantify the latter via an index of\nprobabilistic risk aversion, and we illustrate our results using concrete\nexamples of popular families of distortion functions. As an application of our\nresults, we revisit the market for flood risk insurance in the United States.\nWe present the decentralized risk sharing arrangement as an alternative to the\ncurrent centralized market structure, and we characterize the optimal\nallocations in a numerical study with historical flood data. We conclude with\nan in-depth discussion of the advantages and disadvantages of a decentralized\ninsurance scheme in this setting.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"395 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study Pareto optimality in a decentralized peer-to-peer risk-sharing market where agents' preferences are represented by robust distortion risk measures that are not necessarily convex. We obtain a characterization of Pareto-optimal allocations of the aggregate risk in the market, and we show that the shape of the allocations depends primarily on each agent's assessment of the tail of the aggregate risk. We quantify the latter via an index of probabilistic risk aversion, and we illustrate our results using concrete examples of popular families of distortion functions. As an application of our results, we revisit the market for flood risk insurance in the United States. We present the decentralized risk sharing arrangement as an alternative to the current centralized market structure, and we characterize the optimal allocations in a numerical study with historical flood data. We conclude with an in-depth discussion of the advantages and disadvantages of a decentralized insurance scheme in this setting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用稳健失真风险度量的帕累托最优点对点风险分担技术
我们研究了分散的点对点风险分担市场中的帕累托最优性,在这个市场中,代理人的偏好由不一定是凸的稳健扭曲风险度量来表示。我们得到了市场中总风险的帕累托最优分配的特征,并证明分配的形状主要取决于每个代理人对总风险尾部的评估。我们通过一个概率风险规避指数来量化后者,并使用流行的扭曲函数族的具体例子来说明我们的结果。作为结果的应用,我们重新审视了美国的洪水风险保险市场。我们提出了分散式风险分担安排,作为当前集中式市场结构的替代方案,并利用历史洪水数据通过数值研究描述了最优分配的特征。最后,我们深入探讨了这种情况下分散式保险方案的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DeFi Arbitrage in Hedged Liquidity Tokens Decomposition Pipeline for Large-Scale Portfolio Optimization with Applications to Near-Term Quantum Computing Research and Design of a Financial Intelligent Risk Control Platform Based on Big Data Analysis and Deep Machine Learning Credit Spreads' Term Structure: Stochastic Modeling with CIR++ Intensity Claims processing and costs under capacity constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1