Evaluating Credit VIX (CDS IV) Prediction Methods with Incremental Batch Learning

Robert Taylor
{"title":"Evaluating Credit VIX (CDS IV) Prediction Methods with Incremental Batch Learning","authors":"Robert Taylor","doi":"arxiv-2408.15404","DOIUrl":null,"url":null,"abstract":"This paper presents the experimental process and results of SVM, Gradient\nBoosting, and an Attention-GRU Hybrid model in predicting the Implied\nVolatility of rolled-over five-year spread contracts of credit default swaps\n(CDS) on European corporate debt during the quarter following mid-May '24, as\nrepresented by the iTraxx/Cboe Europe Main 1-Month Volatility Index (BP\nVolatility). The analysis employs a feature matrix inspired by Merton's\ndeterminants of default probability. Our comparative assessment aims to\nidentify strengths in SOTA and classical machine learning methods for financial\nrisk prediction","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the experimental process and results of SVM, Gradient Boosting, and an Attention-GRU Hybrid model in predicting the Implied Volatility of rolled-over five-year spread contracts of credit default swaps (CDS) on European corporate debt during the quarter following mid-May '24, as represented by the iTraxx/Cboe Europe Main 1-Month Volatility Index (BP Volatility). The analysis employs a feature matrix inspired by Merton's determinants of default probability. Our comparative assessment aims to identify strengths in SOTA and classical machine learning methods for financial risk prediction
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用增量批量学习评估信用 VIX (CDS IV) 预测方法
本文介绍了 SVM、GradientBoosting 和 Attention-GRU 混合模型在预测 24 年 5 月中旬后一个季度欧洲公司债信用违约掉期(CDS)五年期展期合约隐含波动率(以 iTraxx/Cboe Europe Main 1-Month Volatility Index (BPVolatility) 为代表)方面的实验过程和结果。分析采用了受默顿违约概率决定因素启发的特征矩阵。我们的比较评估旨在找出 SOTA 和经典机器学习方法在金融风险预测方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DeFi Arbitrage in Hedged Liquidity Tokens Decomposition Pipeline for Large-Scale Portfolio Optimization with Applications to Near-Term Quantum Computing Research and Design of a Financial Intelligent Risk Control Platform Based on Big Data Analysis and Deep Machine Learning Credit Spreads' Term Structure: Stochastic Modeling with CIR++ Intensity Claims processing and costs under capacity constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1