Optimal insurance design with Lambda-Value-at-Risk

Tim J. Boonen, Yuyu Chen, Xia Han, Qiuqi Wang
{"title":"Optimal insurance design with Lambda-Value-at-Risk","authors":"Tim J. Boonen, Yuyu Chen, Xia Han, Qiuqi Wang","doi":"arxiv-2408.09799","DOIUrl":null,"url":null,"abstract":"This paper explores optimal insurance solutions based on the\nLambda-Value-at-Risk ($\\Lambda\\VaR$). If the expected value premium principle\nis used, our findings confirm that, similar to the VaR model, a truncated\nstop-loss indemnity is optimal in the $\\Lambda\\VaR$ model. We further provide a\nclosed-form expression of the deductible parameter under certain conditions.\nMoreover, we study the use of a $\\Lambda'\\VaR$ as premium principle as well,\nand show that full or no insurance is optimal. Dual stop-loss is shown to be\noptimal if we use a $\\Lambda'\\VaR$ only to determine the risk-loading in the\npremium principle. Moreover, we study the impact of model uncertainty,\nconsidering situations where the loss distribution is unknown but falls within\na defined uncertainty set. Our findings indicate that a truncated stop-loss\nindemnity is optimal when the uncertainty set is based on a likelihood ratio.\nHowever, when uncertainty arises from the first two moments of the loss\nvariable, we provide the closed-form optimal deductible in a stop-loss\nindemnity.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores optimal insurance solutions based on the Lambda-Value-at-Risk ($\Lambda\VaR$). If the expected value premium principle is used, our findings confirm that, similar to the VaR model, a truncated stop-loss indemnity is optimal in the $\Lambda\VaR$ model. We further provide a closed-form expression of the deductible parameter under certain conditions. Moreover, we study the use of a $\Lambda'\VaR$ as premium principle as well, and show that full or no insurance is optimal. Dual stop-loss is shown to be optimal if we use a $\Lambda'\VaR$ only to determine the risk-loading in the premium principle. Moreover, we study the impact of model uncertainty, considering situations where the loss distribution is unknown but falls within a defined uncertainty set. Our findings indicate that a truncated stop-loss indemnity is optimal when the uncertainty set is based on a likelihood ratio. However, when uncertainty arises from the first two moments of the loss variable, we provide the closed-form optimal deductible in a stop-loss indemnity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 Lambda 风险价值进行最佳保险设计
本文探讨了基于兰姆达风险价值($\Lambda\VaR$)的最优保险方案。如果使用期望值溢价原则,我们的研究结果证实,与 VaR 模型类似,截断止损赔偿在 $\Lambda\VaR$ 模型中是最优的。此外,我们还研究了使用$\Lambda'\VaR$作为保费原则的情况,结果表明全额保险或无保险都是最优的。如果我们只用$\Lambda'\VaR$来决定保费原则中的风险负荷,那么双止损被证明是最优的。此外,我们还研究了模型不确定性的影响,考虑了损失分布未知但属于确定的不确定性集的情况。我们的研究结果表明,当不确定性集以似然比为基础时,截断的止损赔偿是最优的。然而,当不确定性来自损失变量的前两个时刻时,我们提供了止损赔偿中封闭形式的最优免赔额。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DeFi Arbitrage in Hedged Liquidity Tokens Decomposition Pipeline for Large-Scale Portfolio Optimization with Applications to Near-Term Quantum Computing Research and Design of a Financial Intelligent Risk Control Platform Based on Big Data Analysis and Deep Machine Learning Credit Spreads' Term Structure: Stochastic Modeling with CIR++ Intensity Claims processing and costs under capacity constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1