{"title":"Ni Surface & Polyacryloyl Hydrazide Mediated Growth of Co3O4@NiCu Alloy Nanocuboids for Effective Methanol Oxidation and Oxygen Evolution Reactions","authors":"Santosh Semwal, Aiswarya Samal, Saroj Kumar Nayak, Rajashri R. Urkude, Akhoury Sudhir Kumar Sinha, Umaprasana Ojha","doi":"10.1002/adsu.202400372","DOIUrl":null,"url":null,"abstract":"<p>Strategies to control the size, shape, and lattice arrangement, introduce doping agents, and induce heterostructuring in electrocatalysts are strongly desirable to tailor their activities. Herewith, a one-pot strategy utilizing polyacryloyl hydrazide (PAHz) as the composition directing agent and metallic Ni surface as the shape directing agent is employed to grow Co<sub>3</sub>O<sub>4</sub> doped NiCu alloy nanocuboids on Ni foam (NF) under hydrothermal conditions for electrocatalytic H<sub>2</sub> production. The resulting bi-functional electrodes are suitable for methanol oxidation reaction (MOR) coupled green H<sub>2</sub> production with effective energy efficiency. The low overall potential (MOR+HER) of 1.78 V to realize the current density (<i>j</i>) value of 100 mA cm<sup>−2</sup> and extended durability (100 h@10 mA cm<sup>−2</sup>) along with the selective conversion of methanol to formate support the viability of the NF-PAHz-Co<sub>3</sub>O<sub>4</sub>@NiCu for the said operation. The electrode also displays efficacy toward oxygen evolution reaction (OER) activity and <i>j</i><sub>OER</sub> value of 100 mA cm<sup>−2</sup> is realized at a potential value of 1.65 V<sub>RHE</sub> with adequate durability. Overall, the synthetic strategy is general, scalable and may be extended to grow other metal oxide doped alloy nanostructures in the future.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"8 12","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400372","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Strategies to control the size, shape, and lattice arrangement, introduce doping agents, and induce heterostructuring in electrocatalysts are strongly desirable to tailor their activities. Herewith, a one-pot strategy utilizing polyacryloyl hydrazide (PAHz) as the composition directing agent and metallic Ni surface as the shape directing agent is employed to grow Co3O4 doped NiCu alloy nanocuboids on Ni foam (NF) under hydrothermal conditions for electrocatalytic H2 production. The resulting bi-functional electrodes are suitable for methanol oxidation reaction (MOR) coupled green H2 production with effective energy efficiency. The low overall potential (MOR+HER) of 1.78 V to realize the current density (j) value of 100 mA cm−2 and extended durability (100 h@10 mA cm−2) along with the selective conversion of methanol to formate support the viability of the NF-PAHz-Co3O4@NiCu for the said operation. The electrode also displays efficacy toward oxygen evolution reaction (OER) activity and jOER value of 100 mA cm−2 is realized at a potential value of 1.65 VRHE with adequate durability. Overall, the synthetic strategy is general, scalable and may be extended to grow other metal oxide doped alloy nanostructures in the future.
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.