Bryan S. Stevens, Courtney J. Conway, Kimberly A. Sawyer, Lauren Kershek, Giselle Block, Sandra Hamilton, Rebecca Kolstrom
{"title":"Developing a range-wide sampling framework for endangered species: a case study with light-footed Ridgway’s rail","authors":"Bryan S. Stevens, Courtney J. Conway, Kimberly A. Sawyer, Lauren Kershek, Giselle Block, Sandra Hamilton, Rebecca Kolstrom","doi":"10.1007/s10531-024-02919-5","DOIUrl":null,"url":null,"abstract":"<p>Monitoring provides the foundation for evaluating recovery of endangered species, yet many species lack monitoring programs designed to integrate a species’ unique attributes, specific monitoring objectives, and principles of statistical sampling theory. We developed a framework for monitoring and assessment of endangered light-footed Ridgway’s rails (<i>Rallus obsoletus levipes</i>) across their U.S. range, relative to multi-scale recovery goals. We created spatially explicit sample units and a sampling frame covering all potential habitat to facilitate range-wide probability sampling, and also built a model of the call-broadcast process commonly used to survey marsh birds that included heterogeneity in availability for detection and conditional detectability for each bird during each survey. We used the model to simulate 96 sampling strategies that included different levels of replication, multiple approaches for sample allocation amongst strata, and both simple random and weighted probability sampling (i.e., weights proportional to local rail abundance) of sample units within strata. Effective monitoring surveyed ≥ 20–30% of the sampling frame on ≥ 3 occasions, with weighted sample selection and more targeted sampling (50% of units) for strata that are key to species recovery. We also tested Bayesian N-mixture models for estimating abundance and show that multiple models provide reasonable estimates. This work lays the foundation for statistical sampling and multi-scale population estimation for an endangered bird, and for refinement of abundance estimation models. Moreover, this work provides a replicable process for building customized and statistically defensible sampling frameworks to assess recovery of endangered species that can be used for other sensitive species.</p>","PeriodicalId":8843,"journal":{"name":"Biodiversity and Conservation","volume":"11 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodiversity and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10531-024-02919-5","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring provides the foundation for evaluating recovery of endangered species, yet many species lack monitoring programs designed to integrate a species’ unique attributes, specific monitoring objectives, and principles of statistical sampling theory. We developed a framework for monitoring and assessment of endangered light-footed Ridgway’s rails (Rallus obsoletus levipes) across their U.S. range, relative to multi-scale recovery goals. We created spatially explicit sample units and a sampling frame covering all potential habitat to facilitate range-wide probability sampling, and also built a model of the call-broadcast process commonly used to survey marsh birds that included heterogeneity in availability for detection and conditional detectability for each bird during each survey. We used the model to simulate 96 sampling strategies that included different levels of replication, multiple approaches for sample allocation amongst strata, and both simple random and weighted probability sampling (i.e., weights proportional to local rail abundance) of sample units within strata. Effective monitoring surveyed ≥ 20–30% of the sampling frame on ≥ 3 occasions, with weighted sample selection and more targeted sampling (50% of units) for strata that are key to species recovery. We also tested Bayesian N-mixture models for estimating abundance and show that multiple models provide reasonable estimates. This work lays the foundation for statistical sampling and multi-scale population estimation for an endangered bird, and for refinement of abundance estimation models. Moreover, this work provides a replicable process for building customized and statistically defensible sampling frameworks to assess recovery of endangered species that can be used for other sensitive species.
期刊介绍:
Biodiversity and Conservation is an international journal that publishes articles on all aspects of biological diversity-its description, analysis and conservation, and its controlled rational use by humankind. The scope of Biodiversity and Conservation is wide and multidisciplinary, and embraces all life-forms.
The journal presents research papers, as well as editorials, comments and research notes on biodiversity and conservation, and contributions dealing with the practicalities of conservation management, economic, social and political issues. The journal provides a forum for examining conflicts between sustainable development and human dependence on biodiversity in agriculture, environmental management and biotechnology, and encourages contributions from developing countries to promote broad global perspectives on matters of biodiversity and conservation.