Input-based Framework for Three-valued Abstraction Refinement

Jan Onderka
{"title":"Input-based Framework for Three-valued Abstraction Refinement","authors":"Jan Onderka","doi":"arxiv-2408.12668","DOIUrl":null,"url":null,"abstract":"We present a novel algorithmic framework for Three-valued Abstraction\nRefinement, which extends Counterexample-guided Abstraction Refinement with the\nability to verify all properties of mu-calculus including recovery (the ability\nof the system to always return to a certain state). The framework performs\nrefinement on abstract system inputs rather than abstract states, avoiding\nproblems of previous frameworks. We formalise input-based refinement by\nintroducing the concept of generating automata, and prove that our framework is\nsound, monotone, and complete. We evaluate the usefulness of the framework on\nits implementation in our free and open-source formal verification tool.","PeriodicalId":501208,"journal":{"name":"arXiv - CS - Logic in Computer Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel algorithmic framework for Three-valued Abstraction Refinement, which extends Counterexample-guided Abstraction Refinement with the ability to verify all properties of mu-calculus including recovery (the ability of the system to always return to a certain state). The framework performs refinement on abstract system inputs rather than abstract states, avoiding problems of previous frameworks. We formalise input-based refinement by introducing the concept of generating automata, and prove that our framework is sound, monotone, and complete. We evaluate the usefulness of the framework on its implementation in our free and open-source formal verification tool.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于输入的三值抽象细化框架
我们提出了一种新颖的三值抽象精炼算法框架,它扩展了反例引导的抽象精炼,能够验证包括恢复(系统总是返回到特定状态的能力)在内的μ计算的所有属性。该框架在抽象系统输入而非抽象状态上执行精炼,避免了以往框架的问题。我们通过引入生成自动机的概念,将基于输入的精炼正规化,并证明我们的框架是健全、单调和完整的。我们评估了该框架在我们的免费开源形式验证工具中的实现情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Imperative Language for Verified Exact Real-Number Computation On Randomized Computational Models and Complexity Classes: a Historical Overview Computation and Complexity of Preference Inference Based on Hierarchical Models Stability Property for the Call-by-Value $λ$-calculus through Taylor Expansion Resource approximation for the $λμ$-calculus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1