Scalable Knowledge Refactoring using Constrained Optimisation

Minghao Liu, David M. Cerna, Filipe Gouveia, Andrew Cropper
{"title":"Scalable Knowledge Refactoring using Constrained Optimisation","authors":"Minghao Liu, David M. Cerna, Filipe Gouveia, Andrew Cropper","doi":"arxiv-2408.11530","DOIUrl":null,"url":null,"abstract":"Knowledge refactoring compresses a logic program by introducing new rules.\nCurrent approaches struggle to scale to large programs. To overcome this\nlimitation, we introduce a constrained optimisation refactoring approach. Our\nfirst key idea is to encode the problem with decision variables based on\nliterals rather than rules. Our second key idea is to focus on linear invented\nrules. Our empirical results on multiple domains show that our approach can\nrefactor programs quicker and with more compression than the previous\nstate-of-the-art approach, sometimes by 60%.","PeriodicalId":501208,"journal":{"name":"arXiv - CS - Logic in Computer Science","volume":"395 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge refactoring compresses a logic program by introducing new rules. Current approaches struggle to scale to large programs. To overcome this limitation, we introduce a constrained optimisation refactoring approach. Our first key idea is to encode the problem with decision variables based on literals rather than rules. Our second key idea is to focus on linear invented rules. Our empirical results on multiple domains show that our approach can refactor programs quicker and with more compression than the previous state-of-the-art approach, sometimes by 60%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用约束优化进行可扩展的知识重构
知识重构通过引入新规则来压缩逻辑程序。为了克服这一限制,我们引入了一种约束优化重构方法。我们的第一个关键想法是用基于文字而非规则的决策变量来编码问题。我们的第二个关键想法是专注于线性发明规则。我们在多个领域的实证结果表明,我们的重构方法比以往最先进的方法能更快地重构程序,而且压缩率更高,有时能提高 60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Imperative Language for Verified Exact Real-Number Computation On Randomized Computational Models and Complexity Classes: a Historical Overview Computation and Complexity of Preference Inference Based on Hierarchical Models Stability Property for the Call-by-Value $λ$-calculus through Taylor Expansion Resource approximation for the $λμ$-calculus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1