Learning Brave Assumption-Based Argumentation Frameworks via ASP

Emanuele De AngelisCNR-IASI, Rome, Italy, Maurizio ProiettiCNR-IASI, Rome, Italy, Francesca ToniImperial, London, UK
{"title":"Learning Brave Assumption-Based Argumentation Frameworks via ASP","authors":"Emanuele De AngelisCNR-IASI, Rome, Italy, Maurizio ProiettiCNR-IASI, Rome, Italy, Francesca ToniImperial, London, UK","doi":"arxiv-2408.10126","DOIUrl":null,"url":null,"abstract":"Assumption-based Argumentation (ABA) is advocated as a unifying formalism for\nvarious forms of non-monotonic reasoning, including logic programming. It\nallows capturing defeasible knowledge, subject to argumentative debate. While,\nin much existing work, ABA frameworks are given up-front, in this paper we\nfocus on the problem of automating their learning from background knowledge and\npositive/negative examples. Unlike prior work, we newly frame the problem in\nterms of brave reasoning under stable extensions for ABA. We present a novel\nalgorithm based on transformation rules (such as Rote Learning, Folding,\nAssumption Introduction and Fact Subsumption) and an implementation thereof\nthat makes use of Answer Set Programming. Finally, we compare our technique to\nstate-of-the-art ILP systems that learn defeasible knowledge.","PeriodicalId":501208,"journal":{"name":"arXiv - CS - Logic in Computer Science","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Assumption-based Argumentation (ABA) is advocated as a unifying formalism for various forms of non-monotonic reasoning, including logic programming. It allows capturing defeasible knowledge, subject to argumentative debate. While, in much existing work, ABA frameworks are given up-front, in this paper we focus on the problem of automating their learning from background knowledge and positive/negative examples. Unlike prior work, we newly frame the problem in terms of brave reasoning under stable extensions for ABA. We present a novel algorithm based on transformation rules (such as Rote Learning, Folding, Assumption Introduction and Fact Subsumption) and an implementation thereof that makes use of Answer Set Programming. Finally, we compare our technique to state-of-the-art ILP systems that learn defeasible knowledge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 ASP 学习基于假设的勇敢论证框架
基于假设的论证(ABA)被认为是包括逻辑编程在内的各种非单调推理形式的统一形式主义。它允许捕捉可失败的知识,并进行论证辩论。在许多现有工作中,ABA 框架都是预先给出的,而在本文中,我们将重点放在从背景知识和正/负示例中自动学习 ABA 框架的问题上。与之前的工作不同,我们新提出了在 ABA 稳定扩展下的勇敢推理问题。我们提出了一种基于转换规则(如记诵学习、折叠、假设引入和事实归纳)的新算法,并利用答案集编程实现了该算法。最后,我们将我们的技术与最先进的学习可败知识的 ILP 系统进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Imperative Language for Verified Exact Real-Number Computation On Randomized Computational Models and Complexity Classes: a Historical Overview Computation and Complexity of Preference Inference Based on Hierarchical Models Stability Property for the Call-by-Value $λ$-calculus through Taylor Expansion Resource approximation for the $λμ$-calculus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1