Machine Learning for Quantifier Selection in cvc5

Jan Jakubův, Mikoláš Janota, Jelle Piepenbrock, Josef Urban
{"title":"Machine Learning for Quantifier Selection in cvc5","authors":"Jan Jakubův, Mikoláš Janota, Jelle Piepenbrock, Josef Urban","doi":"arxiv-2408.14338","DOIUrl":null,"url":null,"abstract":"In this work we considerably improve the state-of-the-art SMT solving on\nfirst-order quantified problems by efficient machine learning guidance of\nquantifier selection. Quantifiers represent a significant challenge for SMT and\nare technically a source of undecidability. In our approach, we train an\nefficient machine learning model that informs the solver which quantifiers\nshould be instantiated and which not. Each quantifier may be instantiated\nmultiple times and the set of the active quantifiers changes as the solving\nprogresses. Therefore, we invoke the ML predictor many times, during the whole\nrun of the solver. To make this efficient, we use fast ML models based on\ngradient boosting decision trees. We integrate our approach into the\nstate-of-the-art cvc5 SMT solver and show a considerable increase of the\nsystem's holdout-set performance after training it on a large set of\nfirst-order problems collected from the Mizar Mathematical Library.","PeriodicalId":501208,"journal":{"name":"arXiv - CS - Logic in Computer Science","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we considerably improve the state-of-the-art SMT solving on first-order quantified problems by efficient machine learning guidance of quantifier selection. Quantifiers represent a significant challenge for SMT and are technically a source of undecidability. In our approach, we train an efficient machine learning model that informs the solver which quantifiers should be instantiated and which not. Each quantifier may be instantiated multiple times and the set of the active quantifiers changes as the solving progresses. Therefore, we invoke the ML predictor many times, during the whole run of the solver. To make this efficient, we use fast ML models based on gradient boosting decision trees. We integrate our approach into the state-of-the-art cvc5 SMT solver and show a considerable increase of the system's holdout-set performance after training it on a large set of first-order problems collected from the Mizar Mathematical Library.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
cvc5 中用于量词选择的机器学习
在这项工作中,我们通过对量词选择的高效机器学习指导,大大改进了解决一阶量化问题的最先进 SMT。量词是 SMT 的一大挑战,从技术上讲也是不可判定性的来源。在我们的方法中,我们训练了一个高效的机器学习模型,告诉求解器哪些量词应该实例化,哪些不应该。每个量词都可能被实例化多次,随着求解的进行,活动量词集也会发生变化。因此,在求解器的整个运行过程中,我们会多次调用 ML 预测器。为了提高效率,我们使用了基于梯度提升决策树的快速 ML 模型。我们将这种方法集成到最先进的 cvc5 SMT 求解器中,并在对从 Mizar 数学库中收集的大量一阶问题集进行训练后,证明该系统的保持集性能有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Imperative Language for Verified Exact Real-Number Computation On Randomized Computational Models and Complexity Classes: a Historical Overview Computation and Complexity of Preference Inference Based on Hierarchical Models Stability Property for the Call-by-Value $λ$-calculus through Taylor Expansion Resource approximation for the $λμ$-calculus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1