Generalized Independence Test for Modern Data

Mingshuo Liu, Doudou Zhou, Hao Chen
{"title":"Generalized Independence Test for Modern Data","authors":"Mingshuo Liu, Doudou Zhou, Hao Chen","doi":"arxiv-2409.07745","DOIUrl":null,"url":null,"abstract":"The test of independence is a crucial component of modern data analysis.\nHowever, traditional methods often struggle with the complex dependency\nstructures found in high-dimensional data. To overcome this challenge, we\nintroduce a novel test statistic that captures intricate relationships using\nsimilarity and dissimilarity information derived from the data. The statistic\nexhibits strong power across a broad range of alternatives for high-dimensional\ndata, as demonstrated in extensive simulation studies. Under mild conditions,\nwe show that the new test statistic converges to the $\\chi^2_4$ distribution\nunder the permutation null distribution, ensuring straightforward type I error\ncontrol. Furthermore, our research advances the moment method in proving the\njoint asymptotic normality of multiple double-indexed permutation statistics.\nWe showcase the practical utility of this new test with an application to the\nGenotype-Tissue Expression dataset, where it effectively measures associations\nbetween human tissues.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The test of independence is a crucial component of modern data analysis. However, traditional methods often struggle with the complex dependency structures found in high-dimensional data. To overcome this challenge, we introduce a novel test statistic that captures intricate relationships using similarity and dissimilarity information derived from the data. The statistic exhibits strong power across a broad range of alternatives for high-dimensional data, as demonstrated in extensive simulation studies. Under mild conditions, we show that the new test statistic converges to the $\chi^2_4$ distribution under the permutation null distribution, ensuring straightforward type I error control. Furthermore, our research advances the moment method in proving the joint asymptotic normality of multiple double-indexed permutation statistics. We showcase the practical utility of this new test with an application to the Genotype-Tissue Expression dataset, where it effectively measures associations between human tissues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
现代数据的广义独立性检验
独立性检验是现代数据分析的重要组成部分。然而,传统方法往往难以应对高维数据中复杂的依赖性结构。为了克服这一难题,我们引入了一种新型检验统计量,利用从数据中获得的相似性和不相似性信息来捕捉错综复杂的关系。大量的模拟研究表明,该统计量在高维数据的各种替代方案中都表现出强大的威力。在温和的条件下,我们证明新的检验统计量收敛于 permutation null 分布下的 $\chi^2_4$ 分布,确保了直接的 I 型误差控制。此外,我们的研究还推进了矩方法的发展,证明了多个双指数置换统计量的联合渐近正态性。我们在基因型-组织表达数据集(Genotype-Tissue Expression dataset)上的应用展示了这一新检验的实用性,它能有效地测量人体组织之间的关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclicity Analysis of the Ornstein-Uhlenbeck Process Linear hypothesis testing in high-dimensional heteroscedastics via random integration Asymptotics for conformal inference Sparse Factor Analysis for Categorical Data with the Group-Sparse Generalized Singular Value Decomposition Incremental effects for continuous exposures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1