Simultaneous Inference for Non-Stationary Random Fields, with Application to Gridded Data Analysis

Yunyi Zhang, Zhou Zhou
{"title":"Simultaneous Inference for Non-Stationary Random Fields, with Application to Gridded Data Analysis","authors":"Yunyi Zhang, Zhou Zhou","doi":"arxiv-2409.01220","DOIUrl":null,"url":null,"abstract":"Current statistics literature on statistical inference of random fields\ntypically assumes that the fields are stationary or focuses on models of\nnon-stationary Gaussian fields with parametric/semiparametric covariance\nfamilies, which may not be sufficiently flexible to tackle complex modern-era\nrandom field data. This paper performs simultaneous nonparametric statistical\ninference for a general class of non-stationary and non-Gaussian random fields\nby modeling the fields as nonlinear systems with location-dependent\ntransformations of an underlying `shift random field'. Asymptotic results,\nincluding concentration inequalities and Gaussian approximation theorems for\nhigh dimensional sparse linear forms of the random field, are derived. A\ncomputationally efficient locally weighted multiplier bootstrap algorithm is\nproposed and theoretically verified as a unified tool for the simultaneous\ninference of the aforementioned non-stationary non-Gaussian random field.\nSimulations and real-life data examples demonstrate good performances and broad\napplications of the proposed algorithm.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current statistics literature on statistical inference of random fields typically assumes that the fields are stationary or focuses on models of non-stationary Gaussian fields with parametric/semiparametric covariance families, which may not be sufficiently flexible to tackle complex modern-era random field data. This paper performs simultaneous nonparametric statistical inference for a general class of non-stationary and non-Gaussian random fields by modeling the fields as nonlinear systems with location-dependent transformations of an underlying `shift random field'. Asymptotic results, including concentration inequalities and Gaussian approximation theorems for high dimensional sparse linear forms of the random field, are derived. A computationally efficient locally weighted multiplier bootstrap algorithm is proposed and theoretically verified as a unified tool for the simultaneous inference of the aforementioned non-stationary non-Gaussian random field. Simulations and real-life data examples demonstrate good performances and broad applications of the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非静态随机场的同步推理,在网格数据分析中的应用
目前有关随机场统计推断的统计文献通常假定随机场是静止的,或侧重于具有参数/半参数协方差族的非静止高斯场模型,这些模型可能不够灵活,无法处理复杂的现代随机场数据。本文通过将随机场建模为非线性系统,并对其进行与位置相关的底层 "移位随机场 "变换,从而对一般类别的非稳态和非高斯随机场进行同步非参数统计推断。推导出了渐近结果,包括随机场高维稀疏线性形式的集中不等式和高斯逼近定理。提出了一种计算高效的局部加权乘法引导算法,并从理论上验证了该算法是上述非平稳非高斯随机场同步推断的统一工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclicity Analysis of the Ornstein-Uhlenbeck Process Linear hypothesis testing in high-dimensional heteroscedastics via random integration Asymptotics for conformal inference Sparse Factor Analysis for Categorical Data with the Group-Sparse Generalized Singular Value Decomposition Incremental effects for continuous exposures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1