Smoothed Robust Phase Retrieval

Zhong Zheng, Lingzhou Xue
{"title":"Smoothed Robust Phase Retrieval","authors":"Zhong Zheng, Lingzhou Xue","doi":"arxiv-2409.01570","DOIUrl":null,"url":null,"abstract":"The phase retrieval problem in the presence of noise aims to recover the\nsignal vector of interest from a set of quadratic measurements with infrequent\nbut arbitrary corruptions, and it plays an important role in many scientific\napplications. However, the essential geometric structure of the nonconvex\nrobust phase retrieval based on the $\\ell_1$-loss is largely unknown to study\nspurious local solutions, even under the ideal noiseless setting, and its\nintrinsic nonsmooth nature also impacts the efficiency of optimization\nalgorithms. This paper introduces the smoothed robust phase retrieval (SRPR)\nbased on a family of convolution-type smoothed loss functions. Theoretically,\nwe prove that the SRPR enjoys a benign geometric structure with high\nprobability: (1) under the noiseless situation, the SRPR has no spurious local\nsolutions, and the target signals are global solutions, and (2) under the\ninfrequent but arbitrary corruptions, we characterize the stationary points of\nthe SRPR and prove its benign landscape, which is the first landscape analysis\nof phase retrieval with corruption in the literature. Moreover, we prove the\nlocal linear convergence rate of gradient descent for solving the SRPR under\nthe noiseless situation. Experiments on both simulated datasets and image\nrecovery are provided to demonstrate the numerical performance of the SRPR.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The phase retrieval problem in the presence of noise aims to recover the signal vector of interest from a set of quadratic measurements with infrequent but arbitrary corruptions, and it plays an important role in many scientific applications. However, the essential geometric structure of the nonconvex robust phase retrieval based on the $\ell_1$-loss is largely unknown to study spurious local solutions, even under the ideal noiseless setting, and its intrinsic nonsmooth nature also impacts the efficiency of optimization algorithms. This paper introduces the smoothed robust phase retrieval (SRPR) based on a family of convolution-type smoothed loss functions. Theoretically, we prove that the SRPR enjoys a benign geometric structure with high probability: (1) under the noiseless situation, the SRPR has no spurious local solutions, and the target signals are global solutions, and (2) under the infrequent but arbitrary corruptions, we characterize the stationary points of the SRPR and prove its benign landscape, which is the first landscape analysis of phase retrieval with corruption in the literature. Moreover, we prove the local linear convergence rate of gradient descent for solving the SRPR under the noiseless situation. Experiments on both simulated datasets and image recovery are provided to demonstrate the numerical performance of the SRPR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平滑稳健相位检索
存在噪声时的相位检索问题旨在从一组具有不频繁但任意破坏的二次测量中恢复感兴趣的信号矢量,它在许多科学应用中发挥着重要作用。然而,基于 $\ell_1$-loss 的非凸稳健相位检索的基本几何结构在很大程度上不为人所知,即使在理想的无噪声环境下也无法研究出虚假的局部解,而且其固有的非光滑性质也影响了优化算法的效率。本文介绍了基于卷积型平滑损失函数族的平滑鲁棒相位检索(SRPR)。理论上,我们证明了 SRPR 具有高概率的良性几何结构:(1) 在无噪声情况下,SRPR 没有虚假局部,目标信号是全局解;(2) 在不频繁但任意的损坏情况下,我们描述了 SRPR 的静止点并证明了其良性景观,这是文献中首次对有损坏的相位检索进行景观分析。此外,我们还证明了无噪声情况下梯度下降求解 SRPR 的局部线性收敛率。我们还提供了模拟数据集和图像复原实验,以证明 SRPR 的数值性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclicity Analysis of the Ornstein-Uhlenbeck Process Linear hypothesis testing in high-dimensional heteroscedastics via random integration Asymptotics for conformal inference Sparse Factor Analysis for Categorical Data with the Group-Sparse Generalized Singular Value Decomposition Incremental effects for continuous exposures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1