Random effects estimation in a fractional diffusion model based on continuous observations

Nesrine Chebli, Hamdi Fathallah, Yousri Slaoui
{"title":"Random effects estimation in a fractional diffusion model based on continuous observations","authors":"Nesrine Chebli, Hamdi Fathallah, Yousri Slaoui","doi":"arxiv-2409.04331","DOIUrl":null,"url":null,"abstract":"The purpose of the present work is to construct estimators for the random\neffects in a fractional diffusion model using a hybrid estimation method where\nwe combine parametric and nonparametric thechniques. We precisely consider $n$\nstochastic processes $\\left\\{X_t^j,\\ 0\\leq t\\leq T\\right\\}$, $j=1,\\ldots, n$\ncontinuously observed over the time interval $[0,T]$, where the dynamics of\neach process are described by fractional stochastic differential equations with\ndrifts depending on random effects. We first construct a parametric estimator\nfor the random effects using the techniques of maximum likelihood estimation\nand we study its asymptotic properties when the time horizon $T$ is\nsufficiently large. Then by taking into account the obtained estimator for the\nrandom effects, we build a nonparametric estimator for their common unknown\ndensity function using Bernstein polynomials approximation. Some asymptotic\nproperties of the density estimator, such as its asymptotic bias, variance and\nmean integrated squared error, are studied for an infinite time horizon $T$ and\na fixed sample size $n$. The asymptotic normality and the uniform convergence\nof the estimator are investigated for an infinite time horizon $T$, a high\nfrequency and as the order of Bernstein polynomials is sufficiently large. Some\nnumerical simulations are also presented to illustrate the performance of the\nBernstein polynomials based estimator compared to standard Kernel estimator for\nthe random effects density function.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"140 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of the present work is to construct estimators for the random effects in a fractional diffusion model using a hybrid estimation method where we combine parametric and nonparametric thechniques. We precisely consider $n$ stochastic processes $\left\{X_t^j,\ 0\leq t\leq T\right\}$, $j=1,\ldots, n$ continuously observed over the time interval $[0,T]$, where the dynamics of each process are described by fractional stochastic differential equations with drifts depending on random effects. We first construct a parametric estimator for the random effects using the techniques of maximum likelihood estimation and we study its asymptotic properties when the time horizon $T$ is sufficiently large. Then by taking into account the obtained estimator for the random effects, we build a nonparametric estimator for their common unknown density function using Bernstein polynomials approximation. Some asymptotic properties of the density estimator, such as its asymptotic bias, variance and mean integrated squared error, are studied for an infinite time horizon $T$ and a fixed sample size $n$. The asymptotic normality and the uniform convergence of the estimator are investigated for an infinite time horizon $T$, a high frequency and as the order of Bernstein polynomials is sufficiently large. Some numerical simulations are also presented to illustrate the performance of the Bernstein polynomials based estimator compared to standard Kernel estimator for the random effects density function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于连续观测的分数扩散模型中的随机效应估计
本研究的目的是使用一种混合估计方法,结合参数和非参数技术,构建分数扩散模型中的随机效应估计值。我们精确地考虑了 $n$stochastic processes $\left\{X_t^j,0\leq t\leq T\right\}$, $j=1,\ldots, n$continuously observed over the time interval $[0,T]$,其中每个过程的动态都由取决于随机效应的分数随机微分方程来描述。我们首先利用最大似然估计技术构建了随机效应的参数估计器,并研究了当时间跨度 $T$ 足够大时的渐近特性。然后,考虑到所获得的随机效应估计器,我们利用伯恩斯坦多项式近似法为它们的共同未知密度函数建立了一个非参数估计器。在无限时间跨度 $T$ 和固定样本量 $n$ 的条件下,研究了密度估计器的一些渐近特性,如渐近偏差、方差和平均综合平方误差。在无限时间跨度 $T$、高频率和伯恩斯坦多项式阶数足够大的情况下,研究了估计器的渐近正态性和均匀收敛性。此外,还进行了数值模拟,以说明基于伯恩斯坦多项式的估计器与随机效应密度函数的标准核估计器相比的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclicity Analysis of the Ornstein-Uhlenbeck Process Linear hypothesis testing in high-dimensional heteroscedastics via random integration Asymptotics for conformal inference Sparse Factor Analysis for Categorical Data with the Group-Sparse Generalized Singular Value Decomposition Incremental effects for continuous exposures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1