Generative Modelling via Quantile Regression

Johannes Schmidt-Hieber, Petr Zamolodtchikov
{"title":"Generative Modelling via Quantile Regression","authors":"Johannes Schmidt-Hieber, Petr Zamolodtchikov","doi":"arxiv-2409.04231","DOIUrl":null,"url":null,"abstract":"We link conditional generative modelling to quantile regression. We propose a\nsuitable loss function and derive minimax convergence rates for the associated\nrisk under smoothness assumptions imposed on the conditional distribution. To\nestablish the lower bound, we show that nonparametric regression can be seen as\na sub-problem of the considered generative modelling framework. Finally, we\ndiscuss extensions of our work to generate data from multivariate\ndistributions.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We link conditional generative modelling to quantile regression. We propose a suitable loss function and derive minimax convergence rates for the associated risk under smoothness assumptions imposed on the conditional distribution. To establish the lower bound, we show that nonparametric regression can be seen as a sub-problem of the considered generative modelling framework. Finally, we discuss extensions of our work to generate data from multivariate distributions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过定量回归建立生成模型
我们将条件生成模型与量子回归联系起来。我们提出了合适的损失函数,并推导出在条件分布的平滑性假设下相关风险的最小收敛率。为了确定下限,我们证明非参数回归可以看作是所考虑的生成建模框架的一个子问题。最后,我们讨论了从多元分布生成数据的工作扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclicity Analysis of the Ornstein-Uhlenbeck Process Linear hypothesis testing in high-dimensional heteroscedastics via random integration Asymptotics for conformal inference Sparse Factor Analysis for Categorical Data with the Group-Sparse Generalized Singular Value Decomposition Incremental effects for continuous exposures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1