Extended Fayans energy density functional: optimization and analysis

IF 3.4 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR Journal of Physics G: Nuclear and Particle Physics Pub Date : 2024-08-21 DOI:10.1088/1361-6471/ad633a
Paul-Gerhard Reinhard, Jared O’Neal, Stefan M Wild, Witold Nazarewicz
{"title":"Extended Fayans energy density functional: optimization and analysis","authors":"Paul-Gerhard Reinhard, Jared O’Neal, Stefan M Wild, Witold Nazarewicz","doi":"10.1088/1361-6471/ad633a","DOIUrl":null,"url":null,"abstract":"The Fayans energy density functional (EDF) has been very successful in describing global nuclear properties (binding energies, charge radii, and especially differences of radii) within nuclear density functional theory. In a recent study, supervised machine learning methods were used to calibrate the Fayans EDF. Building on this experience, in this work we explore the effect of adding isovector pairing terms, which are responsible for different proton and neutron pairing fields, by comparing a 13D model without the isovector pairing term against the extended 14D model. At the heart of the calibration is a carefully selected heterogeneous dataset of experimental observables representing ground-state properties of spherical even–even nuclei. To quantify the impact of the calibration dataset on model parameters and the importance of the new terms, we carry out advanced sensitivity and correlation analysis on both models. The extension to 14D improves the overall quality of the model by about 30%. The enhanced degrees of freedom of the 14D model reduce correlations between model parameters and enhance sensitivity.","PeriodicalId":16766,"journal":{"name":"Journal of Physics G: Nuclear and Particle Physics","volume":"58 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics G: Nuclear and Particle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6471/ad633a","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The Fayans energy density functional (EDF) has been very successful in describing global nuclear properties (binding energies, charge radii, and especially differences of radii) within nuclear density functional theory. In a recent study, supervised machine learning methods were used to calibrate the Fayans EDF. Building on this experience, in this work we explore the effect of adding isovector pairing terms, which are responsible for different proton and neutron pairing fields, by comparing a 13D model without the isovector pairing term against the extended 14D model. At the heart of the calibration is a carefully selected heterogeneous dataset of experimental observables representing ground-state properties of spherical even–even nuclei. To quantify the impact of the calibration dataset on model parameters and the importance of the new terms, we carry out advanced sensitivity and correlation analysis on both models. The extension to 14D improves the overall quality of the model by about 30%. The enhanced degrees of freedom of the 14D model reduce correlations between model parameters and enhance sensitivity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展法扬能量密度函数:优化与分析
在核密度泛函理论中,法扬能量密度函数(EDF)在描述全局核特性(结合能、电荷半径,尤其是半径差异)方面一直非常成功。在最近的一项研究中,使用了有监督的机器学习方法来校准 Fayans 能量密度函数。在这一经验的基础上,我们在这项工作中通过比较不包含等矢量配对项的 13D 模型和扩展的 14D 模型,探索了添加等矢量配对项的效果,等矢量配对项是质子和中子配对场不同的原因。校准的核心是一个精心挑选的异质实验观测数据集,它代表了球状偶偶数原子核的基态特性。为了量化校准数据集对模型参数的影响以及新项的重要性,我们对两个模型都进行了高级灵敏度和相关性分析。扩展到 14D 后,模型的整体质量提高了约 30%。14D 模型自由度的增强降低了模型参数之间的相关性,提高了灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
5.70%
发文量
105
审稿时长
1 months
期刊介绍: Journal of Physics G: Nuclear and Particle Physics (JPhysG) publishes articles on theoretical and experimental topics in all areas of nuclear and particle physics, including nuclear and particle astrophysics. The journal welcomes submissions from any interface area between these fields. All aspects of fundamental nuclear physics research, including: nuclear forces and few-body systems; nuclear structure and nuclear reactions; rare decays and fundamental symmetries; hadronic physics, lattice QCD; heavy-ion physics; hot and dense matter, QCD phase diagram. All aspects of elementary particle physics research, including: high-energy particle physics; neutrino physics; phenomenology and theory; beyond standard model physics; electroweak interactions; fundamental symmetries. All aspects of nuclear and particle astrophysics including: nuclear physics of stars and stellar explosions; nucleosynthesis; nuclear equation of state; astrophysical neutrino physics; cosmic rays; dark matter. JPhysG publishes a variety of article types for the community. As well as high-quality research papers, this includes our prestigious topical review series, focus issues, and the rapid publication of letters.
期刊最新文献
Scalar exotic mesons bb c ¯ ... Photoproduction of the X(3872) beyond vector meson dominance: the open-charm coupled-channel mechanism Fermion condensates induced by axial interactions and cosmological implications Low-lying excited states in 62Ge investigated by multinucleon knock-out reaction Status and future directions for direct cross-section measurements of the 13C(a,n)16O reaction for astrophysics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1