Mass and strain field mediated low thermal conductivity for enhanced thermoelectric properties in Zn substituted SnS

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY CrystEngComm Pub Date : 2024-09-03 DOI:10.1039/D4CE00627E
Parvathi Krishna, V. Vijay, S. Ponnusamy and M. Navaneethan
{"title":"Mass and strain field mediated low thermal conductivity for enhanced thermoelectric properties in Zn substituted SnS","authors":"Parvathi Krishna, V. Vijay, S. Ponnusamy and M. Navaneethan","doi":"10.1039/D4CE00627E","DOIUrl":null,"url":null,"abstract":"<p >Tin sulfide (SnS) is widely recognized as a promising material for thermoelectrics owing to its layered structure, anharmonicity, earth abundance, and minimal toxicity. This study focuses on controlling the hole concentration of SnS by substituting isovalent Zn through a vacuum melting technique. The presence of point defects, such as mass fluctuations and strain field fluctuations, along with lattice dislocations and stacking faults, results in a drop in thermal conductivity. The mass difference between Zn dopant and Sn host atoms plays a significant role in point defect scattering when Zn is substituted in the SnS lattice. Additionally, variations in size and interatomic coupling forces between Zn and Sn atoms contribute to the amplification of point defect scattering, effectively reducing the lattice thermal conductivity. Furthermore, the diminished lattice thermal conductivity of SnS samples with Zn substitution is ascribed to the decreased phonon mean free path. The synergy of multi-scale scattering results in a low thermal conductivity of 0.88 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small> at 773 K. Further, Zn substitution slightly improved the carrier concentration from 6.88 × 10<small><sup>15</sup></small> cm<small><sup>−3</sup></small> to 2.31 × 10<small><sup>16</sup></small> cm<small><sup>−3</sup></small> resulting in enhanced electrical conductivity without the drastic decrement in the Seebeck coefficient. This in turn significantly improved the power factor to 42.6 μW m<small><sup>−1</sup></small> K<small><sup>−2</sup></small> for the Sn<small><sub>0.95</sub></small>Zn<small><sub>0.05</sub></small>S sample.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce00627e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tin sulfide (SnS) is widely recognized as a promising material for thermoelectrics owing to its layered structure, anharmonicity, earth abundance, and minimal toxicity. This study focuses on controlling the hole concentration of SnS by substituting isovalent Zn through a vacuum melting technique. The presence of point defects, such as mass fluctuations and strain field fluctuations, along with lattice dislocations and stacking faults, results in a drop in thermal conductivity. The mass difference between Zn dopant and Sn host atoms plays a significant role in point defect scattering when Zn is substituted in the SnS lattice. Additionally, variations in size and interatomic coupling forces between Zn and Sn atoms contribute to the amplification of point defect scattering, effectively reducing the lattice thermal conductivity. Furthermore, the diminished lattice thermal conductivity of SnS samples with Zn substitution is ascribed to the decreased phonon mean free path. The synergy of multi-scale scattering results in a low thermal conductivity of 0.88 W m−1 K−1 at 773 K. Further, Zn substitution slightly improved the carrier concentration from 6.88 × 1015 cm−3 to 2.31 × 1016 cm−3 resulting in enhanced electrical conductivity without the drastic decrement in the Seebeck coefficient. This in turn significantly improved the power factor to 42.6 μW m−1 K−2 for the Sn0.95Zn0.05S sample.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质量场和应变场介导的低热导率增强了 Zn 取代 SnS 的热电特性
硫化锡(SnS)因其层状结构、非谐波性、丰富的地球资源和极低的毒性而被广泛认为是一种有前途的热电材料。本研究的重点是通过真空熔化技术取代异价 Zn 来控制 SnS 的空穴浓度。质量波动和应变场波动等点缺陷以及晶格位错和堆叠断层的存在会导致热导率下降。当 Zn 取代 SnS 晶格时,Zn 掺杂原子和 Sn 主原子之间的质量差在点缺陷散射中起着重要作用。此外,Zn 原子和 Sn 原子间尺寸和原子间耦合力的变化也会放大点缺陷散射,从而有效降低晶格热导率。此外,Zn 取代后 SnS 样品晶格热导率的降低是由于声子平均自由路径的减少。多尺度散射的协同作用导致 773 K 时的热导率低至 0.88 W m-1 K-1。此外,锌替代还将载流子浓度从 6.88 x 1015 cm-3 小幅提高到 2.31 x 1016 cm-3,从而在不大幅降低塞贝克系数的情况下提高了导电率。这反过来又大大提高了锡 0.95Zn0.05S 样品的功率因数(42.6 W m-1 K-2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
期刊最新文献
Back cover Back cover Back cover Self-assembly of Cu-glutathione nanoparticles on WO3 nanorods: amelioration of charge transfer and photocatalytic performance Robust and efficient reranking in crystal structure prediction: a data driven method for real-life molecules†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1