Rapid particle generation from an STL file and related issues in the application of material point methods to complex objects

IF 2.8 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Computational Particle Mechanics Pub Date : 2024-08-24 DOI:10.1007/s40571-024-00813-z
Duan Z. Zhang, Kyle A. Perez, Paul L. Barclay, Jiajia Waters
{"title":"Rapid particle generation from an STL file and related issues in the application of material point methods to complex objects","authors":"Duan Z. Zhang,&nbsp;Kyle A. Perez,&nbsp;Paul L. Barclay,&nbsp;Jiajia Waters","doi":"10.1007/s40571-024-00813-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we focus on three issues related to applications of material point methods (MPMs) to objects with complex geometries. They are material point generation, compatibility of material points with a mesh, and sensitivity to mesh orientation. An efficient method of generating material points from a stereolithography (STL) file is introduced. This material point generation method is independent of the mesh used in MPM calculations. The compatibility between the material points and the mesh is then studied. We also show that the original MPM and the dual domain material point (DDMP) method are sensitive to mesh orientation. These issues are related to the calculation of the internal force and are concerns of the MPMs. They become more prominent when MPMs are applied to complex geometries. Our numerical results show that the recently developed local stress difference (LSD) algorithm (Perez et al. in J Comp Phys 498:112681, 2024) can be used to effectively address them.\n</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"11 5","pages":"2291 - 2305"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40571-024-00813-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-024-00813-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we focus on three issues related to applications of material point methods (MPMs) to objects with complex geometries. They are material point generation, compatibility of material points with a mesh, and sensitivity to mesh orientation. An efficient method of generating material points from a stereolithography (STL) file is introduced. This material point generation method is independent of the mesh used in MPM calculations. The compatibility between the material points and the mesh is then studied. We also show that the original MPM and the dual domain material point (DDMP) method are sensitive to mesh orientation. These issues are related to the calculation of the internal force and are concerns of the MPMs. They become more prominent when MPMs are applied to complex geometries. Our numerical results show that the recently developed local stress difference (LSD) algorithm (Perez et al. in J Comp Phys 498:112681, 2024) can be used to effectively address them.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从 STL 文件快速生成粒子,以及将材料点方法应用于复杂物体的相关问题
在本文中,我们将重点讨论与复杂几何形状物体的材料点方法(MPM)应用相关的三个问题。它们是材料点生成、材料点与网格的兼容性以及对网格方向的敏感性。本文介绍了一种从立体光刻 (STL) 文件生成材料点的高效方法。这种材料点生成方法与 MPM 计算中使用的网格无关。然后研究了材料点和网格之间的兼容性。我们还表明,原始 MPM 和双域材料点 (DDMP) 方法对网格方向很敏感。这些问题与内力计算有关,也是 MPM 所关注的问题。当将 MPM 应用于复杂几何体时,这些问题会变得更加突出。我们的数值结果表明,最近开发的局部应力差(LSD)算法(Perez 等人,发表于 J Comp Phys 498:112681, 2024)可用于有效解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Particle Mechanics
Computational Particle Mechanics Mathematics-Computational Mathematics
CiteScore
5.70
自引率
9.10%
发文量
75
期刊介绍: GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research. SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including: (a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc., (b) Particles representing material phases in continua at the meso-, micro-and nano-scale and (c) Particles as a discretization unit in continua and discontinua in numerical methods such as Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.
期刊最新文献
DEM modelling of surface indentations caused by granular materials: application to wheel–rail sanding Constrained particle dynamics A volume-adaptive mesh-free model for FSI Simulation of cavitation erosion with bubble collapse Rapid particle generation from an STL file and related issues in the application of material point methods to complex objects Two-scale concurrent simulations for crack propagation using FEM–DEM bridging coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1