Interactive effect of air pollution and genetic risk of depression on processing speed by resting-state functional connectivity of occipitoparietal network
{"title":"Interactive effect of air pollution and genetic risk of depression on processing speed by resting-state functional connectivity of occipitoparietal network","authors":"Yuyanan Zhang, Zhe Lu, Yaoyao Sun, Liangkun Guo, Xiao Zhang, Yundan Liao, Zhewei Kang, Xiaoyang Feng, Guorui Zhao, Junyuan Sun, Yang Yang, Hao Yan, Dai Zhang, Weihua Yue","doi":"10.1186/s12916-024-03614-6","DOIUrl":null,"url":null,"abstract":"Air pollution, a reversible environmental factor, was significantly associated with the cognitive domains that are impaired in major depressive disorder (MDD), notably processing speed. Limited evidence explores the interactive effect of air pollution and the genetic risk of depression on cognition. This cross-sectional study aims to extend the research by specifically examining how this interaction influences depression-related cognitive impairment and resting-state brain function. Eligible participants were 497 healthy adult volunteers (48.7% males, mean age 24.5) living in Beijing for at least 1 year and exposed to relatively high air pollution from the local community controlling for socioeconomic and genomic. Six months’ ambient air pollution exposures were assessed based on residential addresses using monthly averages of fine particulate matter with a diameter of less than or equal to 2.5 μm (PM2.5). A cross-sectional analysis was conducted using functional magnetic resonance imaging (fMRI) and cognitive performance assessments. The polygenic risk score (PRS) of MDD was used to estimate genetic susceptibility. Using a general linear model and partial least square regression, we observed a negative association between resting-state local connectivity in precuneus and PRS-by-PM2.5 interactive effect (PFWE = 0.028), indicating that PM2.5 exposure reduced the spontaneous activity in precuneus in individuals at high genetic risk for MDD. DNA methylation and gene expression of the SLC30A3 gene, responsible for maintaining zinc-glutamate homeostasis, was suggestively associated with this local connectivity. For the global functional connectivity, the polygenic risk for MDD augmented the neural impact of PM2.5 exposure, especially in the frontal-parietal and frontal-limbic regions of the default mode network (PFDR < 0.05). In those genetically predisposed to MDD, increased PM2.5 exposure positively correlated with resting-state functional connectivity between the left angular gyrus and left cuneus gyrus. This connectivity was negatively associated with processing speed. Our cross-sectional study suggests that air pollution may be associated with an increased likelihood of cognitive impairment in individuals genetically predisposed to depression, potentially through alterations in the resting-state function of the occipitoparietal and default mode network.","PeriodicalId":9188,"journal":{"name":"BMC Medicine","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12916-024-03614-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Air pollution, a reversible environmental factor, was significantly associated with the cognitive domains that are impaired in major depressive disorder (MDD), notably processing speed. Limited evidence explores the interactive effect of air pollution and the genetic risk of depression on cognition. This cross-sectional study aims to extend the research by specifically examining how this interaction influences depression-related cognitive impairment and resting-state brain function. Eligible participants were 497 healthy adult volunteers (48.7% males, mean age 24.5) living in Beijing for at least 1 year and exposed to relatively high air pollution from the local community controlling for socioeconomic and genomic. Six months’ ambient air pollution exposures were assessed based on residential addresses using monthly averages of fine particulate matter with a diameter of less than or equal to 2.5 μm (PM2.5). A cross-sectional analysis was conducted using functional magnetic resonance imaging (fMRI) and cognitive performance assessments. The polygenic risk score (PRS) of MDD was used to estimate genetic susceptibility. Using a general linear model and partial least square regression, we observed a negative association between resting-state local connectivity in precuneus and PRS-by-PM2.5 interactive effect (PFWE = 0.028), indicating that PM2.5 exposure reduced the spontaneous activity in precuneus in individuals at high genetic risk for MDD. DNA methylation and gene expression of the SLC30A3 gene, responsible for maintaining zinc-glutamate homeostasis, was suggestively associated with this local connectivity. For the global functional connectivity, the polygenic risk for MDD augmented the neural impact of PM2.5 exposure, especially in the frontal-parietal and frontal-limbic regions of the default mode network (PFDR < 0.05). In those genetically predisposed to MDD, increased PM2.5 exposure positively correlated with resting-state functional connectivity between the left angular gyrus and left cuneus gyrus. This connectivity was negatively associated with processing speed. Our cross-sectional study suggests that air pollution may be associated with an increased likelihood of cognitive impairment in individuals genetically predisposed to depression, potentially through alterations in the resting-state function of the occipitoparietal and default mode network.
期刊介绍:
BMC Medicine is an open access, transparent peer-reviewed general medical journal. It is the flagship journal of the BMC series and publishes outstanding and influential research in various areas including clinical practice, translational medicine, medical and health advances, public health, global health, policy, and general topics of interest to the biomedical and sociomedical professional communities. In addition to research articles, the journal also publishes stimulating debates, reviews, unique forum articles, and concise tutorials. All articles published in BMC Medicine are included in various databases such as Biological Abstracts, BIOSIS, CAS, Citebase, Current contents, DOAJ, Embase, MEDLINE, PubMed, Science Citation Index Expanded, OAIster, SCImago, Scopus, SOCOLAR, and Zetoc.