SelTox: Discovering the Capacity of Selectively Antimicrobial Nanoparticles for Targeted Eradication of Pathogenic Bacteria

Susan Jyakhwo, Valentina Bocharova, Nikita Serov, Andrei Dmitrenko, Vladimir V. Vinogradov
{"title":"SelTox: Discovering the Capacity of Selectively Antimicrobial Nanoparticles for Targeted Eradication of Pathogenic Bacteria","authors":"Susan Jyakhwo, Valentina Bocharova, Nikita Serov, Andrei Dmitrenko, Vladimir V. Vinogradov","doi":"10.1002/admt.202400458","DOIUrl":null,"url":null,"abstract":"For years, researchers have searched for novel antibiotics to combat pathogenic infections. However, antibiotics lack specificity, harm beneficial microbes, and cause the emergence of antibiotic‐resistant strains. This study proposes an innovative approach to selectively eradicate pathogenic bacteria with a minimal effect on non‐pathogenic ones by discovering selectively antimicrobial nanoparticles. To achieve this, a comprehensive database is compiled to characterize nanoparticles and their antibacterial activity. Then, CatBoost regression models are trained for predicting minimal concentration (MC) and zone of inhibition (ZOI). The models achieve a ten‐fold cross‐validation (CV) <jats:italic>R</jats:italic><jats:sup>2</jats:sup> score of 0.82 and 0.84 with root mean square error (RMSE) of 0.46 and 2.41, respectively. Finally, a machine learning (ML) reinforced genetic algorithm (GA) is developed to identify the best‐performing selective antibacterial NPs. As a proof of concept, a selectively antibacterial nanoparticle, CuO, is identified for targeted eradication of a pathogenic bacteria, <jats:italic>Staphylococcus aureus</jats:italic>. A difference in minimal bactericidal concentration (MBC) of 392.85 µg mL<jats:sup>−1</jats:sup> is achieved when compared to non‐pathogenic bacteria, <jats:italic>Bacillus subtilis</jats:italic>. These findings significantly contribute to the emerging research domain of selectively toxic (SelTox) nanoparticles and open the door for future exploration of synergetic interactions of SelTox nanoparticles with drugs.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For years, researchers have searched for novel antibiotics to combat pathogenic infections. However, antibiotics lack specificity, harm beneficial microbes, and cause the emergence of antibiotic‐resistant strains. This study proposes an innovative approach to selectively eradicate pathogenic bacteria with a minimal effect on non‐pathogenic ones by discovering selectively antimicrobial nanoparticles. To achieve this, a comprehensive database is compiled to characterize nanoparticles and their antibacterial activity. Then, CatBoost regression models are trained for predicting minimal concentration (MC) and zone of inhibition (ZOI). The models achieve a ten‐fold cross‐validation (CV) R2 score of 0.82 and 0.84 with root mean square error (RMSE) of 0.46 and 2.41, respectively. Finally, a machine learning (ML) reinforced genetic algorithm (GA) is developed to identify the best‐performing selective antibacterial NPs. As a proof of concept, a selectively antibacterial nanoparticle, CuO, is identified for targeted eradication of a pathogenic bacteria, Staphylococcus aureus. A difference in minimal bactericidal concentration (MBC) of 392.85 µg mL−1 is achieved when compared to non‐pathogenic bacteria, Bacillus subtilis. These findings significantly contribute to the emerging research domain of selectively toxic (SelTox) nanoparticles and open the door for future exploration of synergetic interactions of SelTox nanoparticles with drugs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SelTox:发现选择性抗菌纳米粒子定向消灭致病细菌的能力
多年来,研究人员一直在寻找新型抗生素来对抗病原体感染。然而,抗生素缺乏特异性,会伤害有益微生物,并导致抗生素耐药菌株的出现。本研究提出了一种创新方法,通过发现选择性抗菌纳米粒子,选择性地消灭致病细菌,同时将对非致病细菌的影响降至最低。为此,我们建立了一个全面的数据库来描述纳米粒子及其抗菌活性。然后,训练 CatBoost 回归模型来预测最小浓度(MC)和抑菌区(ZOI)。模型的十倍交叉验证(CV)R2 分别为 0.82 和 0.84,均方根误差(RMSE)分别为 0.46 和 2.41。最后,还开发了一种机器学习(ML)增强遗传算法(GA)来识别性能最佳的选择性抗菌 NPs。作为概念验证,确定了一种选择性抗菌纳米粒子 CuO,用于有针对性地消灭致病菌金黄色葡萄球菌。与非致病菌枯草杆菌相比,其最小杀菌浓度(MBC)达到了 392.85 µg mL-1。这些发现极大地促进了选择性毒性(SelTox)纳米粒子这一新兴研究领域的发展,并为今后探索 SelTox 纳米粒子与药物的协同作用打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plasma-Generated Luminescent Coatings: Innovations in Thermal Sensitivity and Corrosion Resistance Deep-Learning-Assisted Triboelectric Whisker Sensor Array for Real-Time Motion Sensing of Unmanned Underwater Vehicle Spectral Analysis on Color Detection Sharpness of Animal Vision toward Polychromatic Vision System Evaporated Copper-Based Perovskite Dynamic Memristors for Reservoir Computing Systems Hydrocarbon-Based Ionomer/PTFE-Reinforced Composite Membrane Through Multibar Coating Technique for Durable Fuel Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1